Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Testing of Heavy Truck Advanced Driver Assistance Systems and Crash Mitigation Systems

2023-04-11
2023-01-0010
Modern heavy vehicles may be equipped with an Advanced Driver Assistance System (ADAS) designed to increase highway safety. Depending on the vehicle or manufacturer, these systems may detect objects in a driver’s blind spot, provide an alert when the ADAS determines that the vehicle is leaving its lane of travel without the use of a turn signal, or notify the driver when certain road signs are detected. ADASs also include adaptive cruise control, which adjusts the vehicle’s set cruise speed to maintain a safe following distance when a slower vehicle is detected ahead of the truck. In addition, the ADAS may have a Collision Mitigation System (CMS) component that is designed to help drivers respond to roadway situations and reduce the severity of crashes. CMSs typically use radar or a combination of radar and optical technologies to detect objects such as vehicles or pedestrians in the vehicle’s path.
Technical Paper

Vehicle Path-Tracking Control with Dual-Motor SBW System

2023-04-11
2023-01-0692
Improvement of vehicle path-tracking performance not only affects the vehicle driving safety and comfort but is also essential for autonomous driving technology. The current research focuses on vehicle path-tracking control study and application of dual-motor SBW system. The preview driver model is developed by considering the lateral and yaw tracking. MPC (model predictive control) and LQR (linear quadratic regulator) path following controllers are developed to compare the tracking control performance. A steer-by-wire (SBW) system of dual-motor configuration is designed with permanent magnet synchronous motor (PMSM) control scheme. Finally, the proposed control methods are verified with different driving cases, which shows that the system can effectively achieve small tracking errors in the simulation, and also can be applied in the future autonomous driving or advanced driver assistance system to maintain the lateral and yaw errors within a safe range during path-tracking.
Technical Paper

New Controller Evaluation Techniques for Autonomously Driven Heavy-Duty Convoys

2023-04-11
2023-01-0688
Platooning vehicles present novel pathways to saving fuel during transportation. With the rise of autonomous solutions, platooning becomes an increasingly apparent sector requiring the application of this new technology. Platooning vehicles travel together intending to reduce aerodynamic resistance during operation. Drafting allows following vehicles to increase fuel economy and save money on refueling, whether that be at the pump or at a charging station. However, autonomous solutions are still in infancy, and controller evaluation is an exciting challenge proposed to researchers. This work brings forth a new application of an emissions quantification metric called vehicle-specific power (VSP). Rather than utilize its emissions investigative benefits, the present work applies VSP to heterogeneous Class 8 Heavy-Duty truck platoons as a means of evaluating the efficacy of Cooperative Adaptive Cruise Control (CACC).
Technical Paper

Strategies to Define Reasonable Acceptance Criteria and Validation Targets for SOTIF Assurance

2023-04-11
2023-01-0582
Acceptance criteria and validation target are the most important metrics used to measure/assure safety of the intended function (SOTIF) of an autonomous vehicle or advanced driver assistance system (ADAS). Often acceptance criteria are defined as acceptable number of fatalities, injuries or property damage events in certain hours of operation or for certain mileage driven. Validation target on the other hand is the amount of effort required in terms of hours of operation or mileage to be driven to show that the acceptance criteria is met. Although existing research details about potential values for acceptance criteria and validation target, they overlook various factors such as operational design domain, operational lifetime of a vehicle, average mileage of a vehicle, and length of roads. As a result, often acceptance criteria values are very small (e.g., 10-12 incidents/h or mi) and validation targets are very large (e.g., 1013 miles).
Technical Paper

Hierarchical Control Strategy of Predictive Energy Management for Hybrid Commercial Vehicle Based on ADAS Map

2023-04-11
2023-01-0543
Considering the change of vehicle future power demand in the process of energy distribution can improve the fuel saving effect of hybrid system. However, current studies are mostly based on historical information to predict the future power demand, where it is difficult to guarantee the accuracy of prediction. To tackle this problem, this paper combines hybrid energy management with predictive cruise control, proposing a hierarchical control strategy of predictive energy management (PEM) that includes two layers of algorithms for speed planning and energy distribution. In the interest of decreasing the energy consumed by power components and ensuring transportation timeliness, the upper-level introduces a predictive cruise control algorithm while considering vehicle weight and road slope, planning the future vehicle speed during long-distance driving.
Technical Paper

Modular Domain Controller Design Approach: A Key Enabler for ADAS and Automated Driving Functionality

2023-04-11
2023-01-0570
Ensuring the safety of vehicle occupants has always been the primary focus of automakers. To achieve this goal, they have invested in the development of active safety features, which are designed to prevent accidents from occurring in the first place. These innovations are driven by a desire to save lives and reduce the risk of injury or death on the road. The implementation of advanced driver assistance systems (ADAS) and automated driving functions requires a high level of complexity and coordination between various subsystems. To meet these challenges, modular design of the domain controller has emerged as a promising approach. By separating the controller into smaller, specialized modules, it is possible to more efficiently and effectively manage the various functions needed for ADAS and automated driving.
Technical Paper

An ODD-Based Scalable Assurance Framework for Automated Driving Systems

2023-04-11
2023-01-0574
Due to the increasing complexities, the safety assurances for Automated Driving Systems (ADSs) and Advanced Driver Assistance Systems (ADASs) pose challenges. Recent development within the industry and academia suggests a scenario-based approach underpinned by the system’s Operational Design Domain (ODD) for its safety assurance. In such framework, the ODD defines the safe operating boundary, whereas the scenarios set out individual test conditions. To assess the behavior of the system, a critical element for road safety is the ability to respect the rules of the road. This paper joins together ODDs, scenarios, and rules of the road to form a scalable ODD-based safety assurance framework. The backbone of the framework contains a coherent and common taxonomy to describe the ODDs and behavior library, the scenario tagging structure from the ASAM OpenLABEL standard has been used in the example use case.
Technical Paper

Road Parameter Estimation with Drone-Vehicle Communication

2023-04-11
2023-01-0664
The presented study is dedicated to the technology supporting vehicle state estimation and motion control with a concept drone, which helps the vehicle in sensing the surroundings and driving conditions. This concept allows also extending the functionality of the sensors mounted on the vehicle by replacing or including additional parameter observation channels. The paper discusses the feasibility of such a drone-vehicle interaction as well as demonstrates several design configurations. In this regard, the paper presents a general description of the proposed drone system that assists the vehicle and describes an experiment in measuring the profile of the road with a range sensor. The results obtained in the experiment are described in terms of the accuracy to be achieved using the drone and are compared with other studies, which use the methods of estimation from the sensors mounted on the vehicle.
Technical Paper

Utilizing Speed Information Forecast in Energy Optimization of an Electric Vehicle with Adaptive Cruise Controller

2023-04-11
2023-01-0685
The efficiency in energy consumption of an electric vehicle (EV) has significant value to both vehicle manufacturers and vehicle owners. Such efficiency will directly impact the cost of energy and vehicle range while relieving the stringent requirements on the DC motor and battery specs. Nowadays, with the development of advanced driver assistance systems (ADAS), such as adaptive cruise control (ACC) or cooperative adaptive cruise control (CACC), drivers enjoy a much safer driving experience. ADAS capabilities in sensory, computing and communication can be leveraged in EVs for the purpose of optimizing energy consumption. This paper introduces an energy-optimized ACC platform, which utilizes a forecast of the speed profile of the host vehicle in a short (few seconds) horizon. Such speed information can be available through ADAS or similar systems. This paper focuses on optimization in longitudinal tracks.
Technical Paper

Model-Based Coordinated Steering and Braking Control for a Collision Avoidance Driver Assist Function

2023-04-11
2023-01-0678
ADAS (Advanced Driver Assistance System) functions can help the driver avoid accidents or mitigate their effect when they occur, and are pre-cursors to full autonomous driving (SAE defined as Level 4+). The main goal of this work is to develop a Model-Based system to actuate the Evasive Maneuver Assist (EMA) function. A typical scenario is the situation in which longitudinal Autonomous Emergency Braking (AEB) is too late and the driver has to adopt an evasive maneuver to avoid an object suddenly appearing on the road ahead. At this time, EMA can help improve the driver’s steering and braking operation in a coordinated way. The vehicle maneuverability and response performance will be enhanced when the driver is facing the collision. The function will additionally let the vehicle steer in a predetermined optimized trajectory based on a yaw rate set point and stabilize the vehicle. The EMA function is introduced with some analysis of benchmarking data.
Technical Paper

Real-Time Monitoring of Tire Condition with Fast Detection Passive and Wireless TPMS

2023-04-11
2023-01-0749
Accurate tire pressure monitoring system (TPMS) is of great practical importance and the reliability and safety of its power supply module has great concern. The piezoelectric-based surface acoustic wave (SAW) sensor is considered to have great potential in this field because of its passive, wireless and small size advantages. This paper presents the application of passive and wireless SAW sensors for real-time tire condition monitoring. The pressure sensitive structure is optimized and a three-resonator structure is also designed sensing temperature and pressure. Furthermore, a fast detection system is developed to realize high-speed signal acquisition. At last, experiments are executed and the SAW temperature and pressure sensor property is measured.
Technical Paper

Utilizing Neural Networks for Semantic Segmentation on RGB/LiDAR Fused Data for Off-road Autonomous Military Vehicle Perception

2023-04-11
2023-01-0740
Image segmentation has historically been a technique for analyzing terrain for military autonomous vehicles. One of the weaknesses of image segmentation from camera data is that it lacks depth information, and it can be affected by environment lighting. Light detection and ranging (LiDAR) is an emerging technology in image segmentation that is able to estimate distances to the objects it detects. One advantage of LiDAR is the ability to gather accurate distances regardless of day, night, shadows, or glare. This study examines LiDAR and camera image segmentation fusion to improve an advanced driver-assistance systems (ADAS) algorithm for off-road autonomous military vehicles. The volume of points generated by LiDAR provides the vehicle with distance and spatial data surrounding the vehicle.
Technical Paper

Track, GoPro, and Prescan Testing of an ADAS Camera

2023-04-11
2023-01-0826
In order to validate the operation of advanced driver assistance systems (ADAS), tests must be performed that assess the performance of the system in response to different scenarios. Some of these systems are designed for crash-imminent situations, and safely testing them requires large stretches of controlled pavement, expensive surrogate targets, and a fully functional vehicle. As a possible more-manageable alternative to testing the full vehicle in these situations, this study sought to explore whether these systems could be isolated, and tests could be performed on a bench via a hardware-in-the-loop methodology. For camera systems, these benches are called Camera-in-the-Loop (CiL) systems and involve presenting visual stimuli to the device via an external input.
Technical Paper

Automatic Scenario Generation for Simulation-Based Testing of AD/ADAS

2023-04-11
2023-01-0825
Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS) are being actively developed to prevent traffic accidents. As the complexity of AD/ADAS increases, the number of test scenarios increases as well. An efficient development process that meets AD/ADAS quality and performance specifications is thus required. The European New Car Assessment Programme (Euro NCAP®1) and the Japan Automobile Manufacturers Association (JAMA®2) have both defined test scenarios, but some of these scenarios are difficult to carry out with real-vehicle testing due to the risk of harm to human participants. Due to the challenge of covering various scenarios and situations with only real-vehicle testing, we utilize simulation-based testing in this work. Specifically, we construct a Model-in-the-Loop Simulation (MILS) environment for virtual testing of AD/ADAS control logic.
Technical Paper

Drive-Thru Climate Tunnel: A Proposed Method to Study ADAS Performance in Adverse Weather

2023-04-11
2023-01-0827
The advancement of Advanced Driver Assistance System (ADAS) technologies offers tremendous benefits. ADAS features such as emergency braking, blind-spot monitoring, lane departure warning, adaptive cruise control, etc., are promising to lower on-road accident rates and severity. With a common goal for the automotive industry to achieve higher levels of autonomy, maintaining ADAS sensor performance and reliability is the core to ensuring adequate ADAS functionality. Currently, the challenges faced by ADAS sensors include performance degradation in adverse weather conditions and a lack of controlled evaluation methods. Outdoor testing encounters repeatability issues, while indoor testing with a stationary vehicle lacks realistic conditions. This study proposes a hybrid method to combine the advantages of both outdoor and indoor testing approaches in a Drive-thru Climate Tunnel (DCT).
Technical Paper

Prescan Extension Testing of an ADAS Camera

2023-04-11
2023-01-0831
Testing vision-based advanced driver assistance systems (ADAS) in a Camera-in-the-Loop (CiL) bench setup, where external visual inputs are used to stimulate the system, provides an opportunity to experiment with a wide variety of test scenarios, different types of vehicle actors, vulnerable road users, and weather conditions that may be difficult to replicate in the real world. In addition, once the CiL bench is setup and operating, experiments can be performed in less time when compared to track testing alternatives. In order to better quantify normal operating zones, track testing results were used to identify behavior corridors via a statistical methodology. After determining normal operational variability via track testing of baseline stationary surrogate vehicle and pedestrian scenarios, these operating zones were applied to screen-based testing in a CiL test setup to determine particularly challenging scenarios which might benefit from replication in a track testing environment.
Technical Paper

Introduction of the Small Test Robot for Individuals in Dangerous Environments (STRIDE) Platform for Use in ADAS Testing

2023-04-11
2023-01-0795
The use of platforms to carry vulnerable road user (VRU) targets has become increasingly necessary with the rise of automated driver assistance systems (ADAS) on vehicles. These ADAS features must be tested in a wide variety of collision-imminent scenarios which necessitates the use of strikable targets carried by an overrun-able platform. To enable the testing of ADAS sensors such as lidar, radar, and vision systems, S-E-A, a longtime supplier of vehicle testing equipment, has created the STRIDE robotic platform (Small Test Robot for Individuals in Dangerous Environments). This platform contains many of the key ingredients of other platforms on the market, such as a hot-swappable battery, E-stop, and mounting points for targets. However, the STRIDE platform additionally provides features which can enable non-routine testing such as: turning in place, driving with an app on a mobile phone, user-scripting, and steep grade climbing capability.
Technical Paper

Construction of Driver Models for Overtaking Behavior Using LSTM

2023-04-11
2023-01-0794
This study aimed to construct driver models for overtaking behavior using long short-term memory (LSTM). During the overtaking maneuver, an ego vehicle changes lanes to the overtaking lane while paying attention to both the preceding vehicle in the travel lane and the following vehicle in the overtaking lane and returns to the travel lane after overtaking the preceding vehicle in the travel lane. This scenario was segregated into four phases in this study: Car-Following, Lane-Change-1, Overtaking, and Lane-Change-2. In the Car-Following phase, the ego vehicle follows the preceding vehicle in the travel lane. Meanwhile, in the Lane-Change-1 phase, the ego vehicle changes from the travel lane to the overtaking lane. Overtaking is the phase in which the ego vehicle in the overtaking lane overtakes the preceding vehicle in the travel lane.
Technical Paper

Experimental Analysis of Spray Topology in the Wake of an Automotive Body

2023-04-11
2023-01-0793
Advanced driver assistance systems rely on external sensors that encompass the vehicle. The reliability of such systems can be compromised by adverse weather, with performance hindered by both direct impingement on sensors and spray suspended between the vehicle and potential obstacles. The transportation of road spray is known to be an unsteady phenomenon, driven by the turbulent structures that characterise automotive flow fields. Further understanding of this unsteadiness is a key aspect in the development of robust sensor implementations. This paper outlines an experimental method used to analyse the spray ejected by an automotive body, presented through a study of a simplified vehicle model with interchangeable rear-end geometries. Particles are illuminated by laser light sheets as they pass through measurement planes downstream of the vehicle, facilitating imaging of the instantaneous structure of the spray.
Technical Paper

Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

2023-04-11
2023-01-0908
In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM).
X