Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

Anti-Rollover Control for All-Terrain Vehicle Based on Zero-Moment Point

2024-04-30
2024-01-5055
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability.
Journal Article

Examination of Crash Injury Risk as a Function of Occupant Demographics

2024-04-17
2023-22-0002
The objectives of this study were to provide insights on how injury risk is influenced by occupant demographics such as sex, age, and size; and to quantify differences within the context of commonly-occurring real-world crashes. The analyses were confined to either single-event collisions or collisions that were judged to be well-defined based on the absence of any significant secondary impacts. These analyses, including both logistic regression and descriptive statistics, were conducted using the Crash Investigation Sampling System for calendar years 2017 to 2021. In the case of occupant sex, the findings agree with those of many recent investigations that have attempted to quantify the circumstances in which females show elevated rates of injury relative to their male counterparts given the same level bodily insult. This study, like others, provides evidence of certain female-specific injuries.
Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-04-17
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
Journal Article

Driving Behavior during Left-Turn Maneuvers at Intersections on Left-Hand Traffic Roads

2024-04-17
2023-22-0007
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions.
Technical Paper

Study on a Method for Reconstructing Pre-Crash Situations Using Data of an Event Data Recorder and a Dashboard Camera

2024-04-09
2024-01-2891
When investigating traffic accidents, it is important to determine the causes. To do so, it is necessary to reconstruct the accident situation accurately and in detail using objective and diverse information. We propose a method for reconstructing the accident situation (“reconstruction method”) which consists of rebuilding the situation immediately before the collision (“pre-crash situation”) using data collected during that time by an event data recorder (EDR) and a dashboard camera (DBC) onboard one or both of the vehicles involved. First, the vehicle’s traveling trajectory was integrally calculated using the vehicle speed and yaw rate recorded by the EDR, each point along the trajectory being linked to the EDR data.
Technical Paper

An Evaluation of the Performance of the Bendix Wingman Fusion G1 Collision Mitigation System in a 2017 Kenworth T680

2024-04-09
2024-01-2893
The Bendix Wingman Fusion – a radar and camera collision mitigation system (CMS) available on commercial vehicles – was evaluated in two separate test series to determine its performance in simulated rear collision scenarios. In the first series of tests, evaluations were conducted in daytime, nighttime, and rainy conditions between 15 to 58 miles per hour (mph) to evaluate the performance of the audible and visual forward collision warning (FCW) system in a first-generation Bendix Wingman Fusion CMS while approaching a stationary live vehicle target (SLVT) in a 2017 Kenworth T680. A second test series was conducted with a 2017 Kenworth T680 traveling at 50 mph in daytime conditions approaching a decelerating vehicle to evaluate the Bendix Wingman Fusion CMS on the truck. Both test series sought to determine the maximum distance the system would warn prior to the test driver swerving around the SLVT or moving vehicle target.
Technical Paper

Vehicle-in-Virtual-Environment Method for ADAS and Connected and Automated Driving Function Development, Demonstration and Evaluation

2024-04-09
2024-01-1967
The current approach for new Advanced Driver Assistance System (ADAS) and Connected and Automated Driving (CAD) function development involves a significant amount of public road testing which is inefficient due to the number miles that need to be driven for rare and extreme events to take place, thereby being very costly also, and unsafe as the rest of the road users become involuntary test subjects. A new development, evaluation and demonstration method for safe, efficient, and repeatable development, demonstration and evaluation of ADAS and CAD functions called Vehicle-in-Virtual –Environment (VVE) was recently introduced as a solution to this problem. The vehicle is operated in a large, empty, and flat area during VVE while its localization and perception sensor data is fed from the virtual environment with other traffic and rare and extreme events being generated as needed.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

An Enhanced Obstacle Detection in ADAS Applications by Integrating C-V2X with a Stereo Camera Vision System

2024-04-09
2024-01-1991
Recent advancements in 5G technology significantly advance Cellular Vehicle-to-Everything (C-V2X) technology. C-V2X can substantially improve road safety by providing vehicles on the road connectivity with other vehicles, roadside infrastructure, and networks. Integration of C-V2X with Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS) enhances road safety by sharing safety warnings and traffic information that vehicle sensors may not identify. In this paper, we developed an enhanced obstacle detection system by integrating C-V2X and a state-of-the-art DNN algorithm. First, a C-V2X Roadside Unit (RSU) is installed on the utility pole. A stereo camera with a small computing unit is connected to RSU. The deployed object detection system with a stereo camera continuously monitors the intersection area and broadcasts the object detection results to the nearby vehicles equipped with a C-V2X On-Board Unit (OBU).
Technical Paper

Design, Prototyping, and Implementation of a Vehicle-to-Infrastructure (V2I) System for Eco-Approach and Departure through Connected and Smart Corridors

2024-04-09
2024-01-1982
The advent of Vehicle-to-Everything (V2X) communication has revolutionized the automotive industry, particularly with the rise of Advanced Driver Assistance Systems (ADAS). V2X enables vehicles to communicate not only with each other (V2V) but also with infrastructure (V2I) and pedestrians (V2P), enhancing road safety and efficiency. ADAS, which includes features like adaptive cruise control and automatic intersection navigation, relies on V2X data exchange to make real-time decisions and improve driver assistance capabilities. Over the years, the progress of V2X technology has been marked by standardization efforts, increased deployment, and a growing ecosystem of connected vehicles, paving the way for safer and more efficient automated navigation. The EcoCAR Mobility Challenge was a 4-year student competition among 12 universities across the United States and Canada sponsored by the U.S.
Technical Paper

The Effectiveness of Forward Collision Warning Systems in Detecting Real-World Passenger and Nonpassenger Vehicles Relative to a Surrogate Vehicle Target

2024-04-09
2024-01-1978
Automatic emergency braking and forward collision warning (FCW) reduce the incidence of police-reported rear-end crashes by 27% to 50%, but these systems may not be effective for preventing rear-end crashes with nonpassenger vehicles. IIHS and Transport Canada evaluated FCW performance with 12 nonpassenger and 7 passenger vehicle or surrogate vehicle targets in five 2021-2022 model year vehicles. The presence and timing of an FCW was measured as a test vehicle traveling 50, 60, or 70 km/h approached a stationary target ahead in the lane center. Equivalence testing was used to evaluate whether the proportion of trials with an FCW (within ± 0.20) and the average time-to-collision of the warning (within ± 0.23 sec) for each target was meaningfully different from a global vehicle car target (GVT).
Technical Paper

A Method for Determining Mileage Accumulation for Robustness Validation of Advanced Driver Assistance Systems (ADAS) Features

2024-04-09
2024-01-1977
Robustness testing of Advanced Driver Assistance Systems (ADAS) features is a crucial step in ensuring the safety and reliability of these systems. ADAS features include technologies like adaptive cruise control, lateral and longitudinal controls, automatic emergency braking, and more. These systems rely on various sensors, cameras, radar, lidar, and software algorithms to function effectively. Robustness testing aims to identify potential vulnerabilities and weaknesses in these systems under different conditions, ensuring they can handle unexpected scenarios and maintain their performance. Mileage accumulation is one of the validation methods for achieving robustness. It involves subjecting the systems to a wide variety of real-world driving conditions and driving scenarios to ensure the reliability, safety, and effectiveness of the ADAS features.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Study on Aircraft Wing Collision Avoidance through Vision-Based Trajectory Prediction

2024-04-09
2024-01-2310
When the aircraft towing operations are carried out in narrow areas such as the hangars or parking aprons, it has a high safety risk for aircraft that the wingtips may collide with the surrounding aircraft or the airport facility. A real-time trajectory prediction method for the towbarless aircraft taxiing system (TLATS) is proposed to evaluate the collision risk based on image recognition. The Yolov7 module is utilized to detect objects and extract the corresponding features. By obtaining information about the configuration of the airplane wing and obstacles in a narrow region, a Long Short-Term Memory (LSTM) encoder-decoder model is utilized to predict future motion trends. In addition, a video dataset containing the motions of various airplane wings in real traction scenarios is constructed for training and testing.
Technical Paper

Multi-Objective Optimization of Occupant Survival Space of a Medium-Duty Vehicle under Rollover Condition

2024-04-09
2024-01-2263
Due to the high center of gravity of medium-duty vehicles, rollover accidents can easily occur during high-speed cornering and lane changes. In order to prevent the deformation of the body structure, which would restrict the survival space and cause compression injuries to occupants, it is necessary to investigate methods for mitigating these incidents. This paper establishes a numerical model of right-side rollover for a commercial medium-duty vehicle in accordance with ECE R66 regulations, and the accuracy of the model is verified by experiment. According to the results, the material and size parameters of the key components of the right side pillar are selected as design variables. The response result matrix was constructed using the orthogonal design method for total mass, energy absorption, maximum collision acceleration, and minimum distance from the survival space.
Technical Paper

Validation and Analysis of Driving Safety Assessment Metrics in Real-world Car-Following Scenarios with Aerial Videos

2024-04-09
2024-01-2020
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles.
Technical Paper

Digital Twin Based Multi-Vehicle Cooperative Warning System on Mountain Roads

2024-04-09
2024-01-1999
Compared with urban areas, the road surface in mountainous areas generally has a larger slope, larger curvature and narrower width, and the vehicle may roll over and other dangers on such a road. In the case of limited driver information, if the two cars on the mountain road approach fast, it is very likely to occur road blockage or even collision. Multi-vehicle cooperative control technology can integrate the driving data of nearby vehicles, expand the perception range of vehicles, assist driving through multi-objective optimization algorithm, and improve the driving safety and traffic system reliability. Most existing studies on cooperative control of multiple vehicles is mainly focused on urban areas with stable environment, while ignoring complex conditions in mountainous areas and the influence of driver status. In this study, a digital twin based multi-vehicle cooperative warning system was proposed to improve the safety of multiple vehicles on mountain roads.
Technical Paper

Research on Occupant Injury Prediction Method of Vehicle Emergency Call System Based on Machine Learning

2024-04-09
2024-01-2010
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model.
X