Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

It Takes a Village: A Case Study of Business Development and Innovation in a UAS/AUS Ecosystem to Address Critical Industry Challenges

2021-04-15
2021-01-1002
Entrepreneurial innovation that spurs economic development requires a collaborative cluster of cooperative effort, across a diverse ecosystem of partners. Literature provides resounding evidence to support the notion that an innovative, entrepreneurial ecosystem is critical to both successful economic development and industry sector growth. The UAS/AUS industry sector is a fast-growing sector across the United States, with regional leadership demonstrated in North Dakota, California, North Carolina, New York, Oklahoma, Texas and New Mexico. This case study is focused on investigating how the North Dakota autonomous systems ecosystem continues to evolves and develop mechanisms and partnerships to address industry pain points, facilitate cutting edge research, ensure high-quality UAS/AUS testing, and support an adaptive business development pipeline across the entrepreneurial life cycle.
Technical Paper

The Benefits of Advanced 3D Lidar for Autonomous Mobile Robots

2021-04-15
2021-01-1015
Breakthroughs in automation and robotics are already improving worker safety and efficiency, and these benefits will continue to grow as autonomous mobile robots (AMRs) become capable of performing increasingly complex tasks. Improvements in mobile robots’ performance capabilities will be driven largely by increased utilization of more advanced sensor and software technologies. Next generation sensors, such as advanced 3D lidar, will increase AMRs’ abilities to monitor and respond to their changing surroundings in both indoor and outdoor applications. These improvements are critical for achieving broad AMR adoption because robots must detect and classify objects at ranges that allow appropriate decision-making and safe, efficient navigation. This requires perception data detailed enough to support the robot’s ability to identify and distinguish between objects of varying motion, shape, reflectivity, and material composition.
Technical Paper

Rattle and Squeak Investigation on the Interior Components of Automobile

2021-04-08
2021-01-5034
Automotive rattle and squeak performance is an important factor affecting passenger comfort and perceived quality. In the current work, finite element simulation is developed to analyze the noise potential of adjacent interior components. The statistical “3σ” limit is adopted to assess the rattle risk at adjacent surfaces assuming a Gaussian distribution. The probability expressions about noise registration are derived for the symmetric and asymmetric tolerance zones of an initial nominal gap. Also the acoustical effects of material pairs are tested by stick-slip experiments. Results show modified polypropylene is compatible in frictional contact with itself but expresses noise when paired to adjacent components manufactured of modified acrylonitrile-butadiene-styrene terpolymer under multiple conditions.
Technical Paper

Detailed Characterization of Gaseous Emissions from Advanced Internal Combustion Engines

2021-04-06
2021-01-0634
With the advancement of engine technologies and combustion strategies, aftertreatment architectures are expected to evolve as they continue to be the primary emissions mitigation hardware. Some of the engine approaches offer unique challenges and benefits that are not well understood beyond criteria pollutant emissions. As such, there continues to be a need to quantify engine emissions characteristics in pursuit of catalyst technology development and the use of advanced simulation tools. The following study discusses results from an extensive engine emissions assessment for current state-of-the-art technology and novel combustion regimes. The engines tested include a Tier 4 final compliant 6.8 L John Deere PSS 6068 diesel engine, a modified 15 L diesel engine, and a dual fuel 13 L natural gas-diesel engine. The dual fuel engine could operate in conventional positive ignition mode (CDF) or low temperature reactivity-controlled compression ignition mode (RCCI).
Technical Paper

Turbocompounding the Opposed-Piston 2-Stroke Engine

2021-04-06
2021-01-0636
This paper presents analytical research conducted into the level of fuel consumption improvement that can be expected from turbocompounding a medium-duty opposed-piston 2-stroke engine, which is part of a hybridized vehicle propulsion system. It draws on a successful earlier study which showed a non-compounded opposed-piston engine to be clearly superior to other forms of 2-stroke engine, such as the widely adopted uniflow-scavenged poppet valve configuration. Electrical power transmission is proposed as the method of providing the necessary variable-speed drive to transmit excess turbine power to the system energy storage medium. The work employs one-dimensional engine simulation on a single-cylinder basis, using brake specific fuel consumption (BSFC) as the reportable metric, coupled with positive or negative power flow to the engine from the compounder; this is a variation on an approach successfully used in earlier work.
Technical Paper

Practical Approach to Enhance Gear Shift Quality in Automatic Transmissions

2021-04-06
2021-01-0688
Passenger utility vehicles like car, SUVs, MPVs are used in wide application all over the world. Luxuries are becoming essential features of product mix along with comfort and ergonomics. Customer desires best shift quality with emerging technologies like AT, DCT, CVT, etc. and every OEM is working hard to achieve it. It is very difficult to satisfy the customer desire because of diversities in demographics and geographic. Gear shift quality (GSQ) is very crucial touch point in overall drive feel of vehicle. It consist of various parameters like mode selection feel, precision, comfort, select Noise, etc. It demands tradeoff practices among various parameters as stated. In this paper, external mode selection system of automatic transmission is explained. Various contributing parameters are explained with practical design approach for detent profile, mode selection mechanism, cable & dampers, etc.
Technical Paper

Numerical Analysis of the Effect of an Idler Disk on Centrifugal Pump Performance

2021-04-06
2021-01-0687
Designing a centrifugal pump impeller comes with challenges due to multiple parameters that affect the pump efficiency. A high velocity gradient exists in the flow between the impeller shroud and sidewall of the pump casing due to one surface stationary and the other moving at a high velocity. The internal rotating flow in the impeller shroud-sidewall gap is a major problem that leads to a decrease in pump performance. This study presents a design modification of the gap between the impeller shroud and the pump casing sidewall using an idler disk located in between, which rotates freely during pump operation. In this paper, a numerical analysis was performed to investigate the idler disk's effect on the pump performance for different volumetric flow rate values and idler disk geometries. ANSYS-2019-R1 was used (FLUENT solver) to carry out the computational fluid dynamics (CFD) analysis for evaluating the performance of the baseline and modified designs in a centrifugal pump.
Technical Paper

Methodology for the Geometric Layout of a Mechanically Fully Variable Valve Train with Two Synchronously Rotating Cam Disks

2021-04-06
2021-01-0684
New engine concepts such as Miller, HCCI or highly diluted combustion offer great potential for further optimization of ICEs in terms of fuel economy and pollutant emissions. However, the development of such concepts requires a high degree of variability in the control of gas exchange, characterized by variability in valve spread, maximum valve lift and - ideally independent of these two variables - in valve opening time. In current series variable valvetrains, valve lift and opening duration are usually directly dependent one from the other. In the ideal case, however, engine concepts such as Miller require a fully flexible variation of the closing time of the intake valve while still maintaining the same intake opening time. Here, a methodology for the geometric layout of fully variable valve trains with significantly extended functionalities is presented. In this concept, the control of the valve opening and closing events is distributed to two synchronously rotating cam disks.
Technical Paper

Construction of New MBD Process for Valve Train That Realizes Multi-Functional and High-Performance Optimal Design in a Short Time

2021-04-06
2021-01-0683
Model-based development (MBD), which makes it possible to study and adjust contradictory requirements between a large number of functions and systems to a high level in a short period of time was implemented within an engine development. In fact, however, elevating engine systems to more advanced levels is a challenge even by satisfying the stand-alone requirements of components. In addition, a still higher level of technology is required for the conflicting relationships between multiple functions, e.g. the power output of an engine and its strength and durability performance, and the reconciliation between the numerous related systems that comprise it. Such reconciling technology requires the consideration of overall optimization that envisions design over a wide range. For present-day development, this would require an extensive period of examination over several years. This presents the issue of requiring an extended period for verification.
Technical Paper

Assessment of Exhaust Actuator Control at Low Ambient Temperature Conditions

2021-04-06
2021-01-0681
Exhaust sensors and actuators used in automotive applications are subjected to wide variety of operating ambient conditions , the performance of these actuators is challenging especially at cold ambient operating conditions, active exhaust tuning valves with position sensors are used to adjust the sound levels, or noise, vibration and harshness (NVH) from a control unit within the vehicle that leads to an improved driving experience wherein the driver selects their preferred sound levels. However, the operating behavior is crucially influenced by the characteristics of the drive cycle and ambient temperature. The study in this paper is intended to evaluate the icing formation at the start of drive cycle and at different ambient temperature conditions. The test data were obtained through real road and chassis dyno testing at different ambient conditions.
Technical Paper

Numerical Approach to Solve Mobile Reservoir Design

2021-04-06
2021-01-0680
Mobile hydraulic machines are the unrecognized stars of the world. Digging the channels, loading the piles, excavating at various altitude and varying ambient are extremely tough work a machine does only with the help of hydraulics. Reservoirs to store the hydraulic oil plays key role in accomplishing these jobs. Most of the reservoir compromises with their shape and aesthetic due to compactness of the machine. The hydraulic reservoir performs various duties, the primary and obvious job of the reservoir is to hold the hydraulic fluid and used to circulate into the actuators of the system via pumps and valves whereas reservoirs are also responsible for providing enough surface area for the cooling of the hydraulic fluid.
Technical Paper

The Breaking Torsion Test and Quasi-Static Finite Element Simulations of the Rzeppa Type Constant Velocity Joint under a Large Joint Angle

2021-04-06
2021-01-0706
The breaking torque is an essential property that identifies the strength of driveshafts under high torque loads. In the breaking torsion test, the constant velocity joint of the driveshafts is usually loaded slowly at a very slow rotating speed under a specific joint angle until it breaks. Under different joint angles, the Rzeppa type constant velocity joint, namely ball joints (BJ), will break at different positions and with different torques. Common results of fracture position include the shaft of the outer race, the shell of the outer race, and the cage column. Simultaneously, the plastic deformation caused by compressive stress occurs at the specific position of the ball track and the cage. In order to analyze the failure reason of the ball joint under a larger joint angle, the quasi-static finite element simulations and test methods are used to analyze the damage caused by stress distribution based on material properties.
Technical Paper

Tooth Mesh Modeling of Spur Gears with Tooth Root Crack Damage Using a Finite Element/Contact Mechanics Approach

2021-04-06
2021-01-0699
Motivated by accurate representations in gear dynamics models, this work analyzes the force-deflection relationship between spur gear pairs when the gear teeth have tooth root cracks. A finite element/contact mechanics approach is used to accurately capture the elastic deformations of the gear mesh incorporating kinematic gear motion; elastic deflections of the teeth, root, and blank; and elastic contact between the mating gear teeth. Tooth root crack damage of fixed sizes are analyzed, and the resulting static transmission error and mesh stiffness are calculated. These FE/CM model outputs are relatively insensitive to important gear crack geometry, including the initial crack location, the path it follows, and its final location. Crack-induced changes in static transmission error and mesh stiffness are driven by the remaining amount of the tooth that is healthy. Calculations of average-slope and local-slope mesh stiffness are included because both are used in gear dynamic models.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Effectiveness of Advanced Driver Assistance Systems in Preventing System-Relevant Crashes

2021-04-06
2021-01-0869
This retrospective cohort study uses survival analysis to estimate the effectiveness of Toyota ADAS in helping prevent system-relevant crashes. Toyota production data were merged with police reported crash files from eight U.S. states for crash years 2015 up to 2019 by 17-digit vehicle identification number (VIN). System-relevant crash scenarios included: striking vehicle in front-to-rear, single vehicle run-off-the-road, same-direction sideswipe, head-on, and pedestrian struck. The study vehicle cohort included 11 Toyota/Lexus models, model years 2015 through 2018, sold in the eight study states. ADAS technologies studied included automatic emergency braking (AEB), lane departure warning (LDW), lane keeping assistance (LKA), blind spot monitoring (BSM) and pedestrian automatic emergency braking (PedAEB). Among the study cohort of 2,394,913 vehicles, police reported 308,490 crashes. The crude crash rate ratio (CRR) was 0.61 for AEB-equipped versus non-equipped vehicles.
Technical Paper

Do Driver Characteristics and Crash Conditions Modify the Effectiveness of Automatic Emergency Braking?

2021-04-06
2021-01-0874
Studies of automatic emergency braking (AEB) find that AEB-equipped vehicles are around half as likely to crash. This study examines whether driver characteristics and road and weather conditions modify this preventive effect of AEB. Toyota production data were merged with police reported crash files from eight U.S. states for crash years 2015 up to 2019 by 17-digit vehicle identification number (VIN). Using a case-control design, this study investigated the relationship of AEB presence with being a case vehicle in a system-relevant crash (the striking vehicle in front-to-rear crash; n=30,056) versus an AEB non-relevant control vehicle (the struck vehicle in a front-to-rear crash; n=62,820). The analysis was stratified by driver characteristics and by weather and road conditions. Logistic regression modeled the relationship, controlling for exposure (vehicle-days) and possible confounding factors.
Technical Paper

Investigation of the Impairment on Road Traffic through Animation and Sequential Activation

2021-04-06
2021-01-0852
Two research fields are presented in this paper covering new lighting functions. In the first part, a study is presented that evaluates distraction by light animations. 41 test subjects were involved, and a situation was constructed with several traffic participants and an animated-light vehicle parked so as to be conspicuously within the test subjects’ view. 91% of the test subjects stated they felt little or no distraction or impairment from the light display on the parked car. 29% noticed something conspicuous about the test vehicle. 22% indicated they had noticed the car’s lights flashing as its central locking system was operating. Only 7%—three of the 41 participants—noticed the animations in addition to their traffic monitoring. Of these, two said they didn’t feel disturbed at all by the animations while the third found it only very slightly distracting. Nobody said the distraction or impairment was “neutral”, “little bit” or “strong”.
Technical Paper

Development of Aerodynamic Drag Reduction around Rear Wheel

2021-04-06
2021-01-0962
Due to new CO2 regulations and increasing demand for improved fuel economy, reducing aerodynamic drag has become more critical. Aerodynamic drag at the rear of the vehicle accounts for approximately 40% of overall aerodynamic drag due to low base pressure in the wake region. Many studies have focused on the wake region structure and shown that drag reduction modifications such as boattailing the rear end and sharpening the rear edges of the vehicle are effective. Despite optimization using such modifications, recent improvements in the aerodynamic drag coefficient (Cd) seem to have plateaued. One reason for this is the fact that vehicle design is oriented toward style and practicality. Hence, maintaining flexibility of design is crucial to the development of further drag reduction modifications. The purpose of this study was to devise a modification to reduce rear drag without imposing additional design restrictions on the upper body.
Technical Paper

Experimental and Numerical Investigation of a Full-Sized Aerodynamic Vehicle Model in Relation to Its Production Car

2021-04-06
2021-01-0963
In this paper, the differences between a production car of the 2018 A-class and an early stage vehicle model with a mostly similar outer skin are examined experimentally and numerically. The aerodynamic development of vehicles at Mercedes-Benz is divided into several phases. When comparing force coefficients differences can be observed between these distinct hardware stages as well as when comparing steady state simulations to wind tunnel measurements. In early phases when prototype vehicles are not yet available, so-called aero foam models are used. These are well-defined full-sized vehicle models, as the outer skin is milled from Polyurethane. Important aerodynamic characteristics such as a motor compartment with a cooling module, deflecting axles with rotatable wheels and underbody covers are represented.
X