Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-13
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life, or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Towards Semi-Supervised Causal Open Set Recognition

2022-06-28
2022-01-7031
Most current deep learning methods assume the same class distributions for training and testing datasets. However, recognition of possible unknown class samples, i.e., classes not included in training that appear in testing, is common in the real world. This realistic problem is known as open-set recognition (OSR), where a classifier is trained to not only distinguish between known classes, but also to identify unknown classes as “unseen”. However, current state-of-the-art OSR methods rely heavily on large amounts of labeled training data, which are often not easily available in real applications. In this paper, we propose a novel semi-supervised causal open set recognition framework, which is motivated by the idea that generalized class and sample attributes learned through both labeled and unlabeled data will allow for the generation of more accurate counterfactuals, increasing the accuracy of unseen and seen recognition.
Technical Paper

FBS Decoupling at Suspension Level for Road Noise Applications

2022-06-15
2022-01-0978
With the electrification trend in the automotive industry, the main contributors to in-vehicle noise profile are represented by drivetrain, road and wind noise. To tackle the problem in an early stage, the industry is developing advanced techniques guaranteeing modularity and independent description of each contributor. Component-based Transfer Path Analysis (C-TPA) allows individual characterization of substructures that can be assembled into a virtual vehicle assembly, allowing the manufacturers to switch between different designs, to handle the increased number of vehicle variants and increasing complexity of products. A major challenge in this methodology is to describe the subsystem in its realistic operational boundary conditions and preload. Moreover, to measure such component, it should be free at the connection interfaces, which logically creates significant difficulties to create the required conditions during the test campaign.
Technical Paper

Battery Electric Vehicles Energy Consumption Breakdown from On-Road Trips

2022-06-14
2022-37-0009
Battery Electric Vehicle (BEV) sales have been spiking up due to a series of factors: zero tailpipe emissions, wider model availability, increased customer acceptance, reduced purchase price, improved performance and range. The latter is a crucial factor the consumers consider when purchasing a BEV, and it largely depends on how the vehicle operates (e.g. average speed), traffic, ambient conditions, and battery size. When driven on the roads, the actual range of BEVs can be significantly smaller than the certified value obtained from laboratory testing at standard conditions. To understand the factors influencing vehicle range in real-world operation, the study team performed on-road tests on three production passenger vehicles currently available in the European market. The measured quantities, including vehicle signals from OBD/UDS, were used to quantify the vehicle energy consumption.
Research Report

Design of the In-vehicle Experience

2022-06-09
EPR2022012
The in-vehicle experience, both physical and digital, is increasingly the differentiating factor between vehicles. Since touch displays, smart surfaces, and internet connectivity are present in most vehicle segments, the growing resemblance of in-vehicle experiences with mobile experiences leads to user expectations on par with smartphones. While manufacturers are faced with providing suitable service offerings that are safe to use, they must also identify services to exclude or limit, without encouraging drivers to resort back to their mobile devices. This increasingly complex in-vehicle experience design process is being shaped by new stakeholders, including operating system providers and application developers. Design of the In-vehicle Experience examines the challenging and changing relationships between manufacturers (that lack in software development and mobile experience design skills) and new stakeholders (that lack the decades of experience designing for the driving context).
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Artificial Intelligence in Air Cargo System

2022-05-26
2022-26-0022
Air Cargo is one of the major modes of cargo transportation in the world. It is helping to transport goods swiftly across the globe during emergencies like pandemic, evacuation, and natural calamities etc. It plays a key role in economy of a country by exporting and importing goods across the globe. This business is growing every YOY with increase in demand for e-Commerce and globalization. It is also important to keep up the efficiency of the system as the business demand grows. This paper focuses on Artificial Intelligence (AI) implementation can reduce the inefficiency and inconsistency due to the manual intervention in cargo operation in different areas.
Research Report

The Right Level of Automation for Industry 4.0

2022-05-16
EPR2022013
In its entirety, automation is part of an integrated, multi-disciplinary product development process including the design, process, production, logistics, and systems approach—it depends on all these areas, but it also influences them as well. Automation in aerospace manufacturing is present throughout the entire supply chain, from elementary part manufacturing at suppliers up to final assembly, and a clear understanding of all the benefits (and drawbacks) of automation would help designers and engineers select the right designs for and levels of automation. The Right Level of Automation Within Industry 4.0 examines all impacts of automation that should be known by designers, manufacturers, and companies before investments in automation-related decisions are made—regardless of the which industry they work in. The process and the set of criteria discussed in this report will help decision makers select the right level of automation.
Technical Paper

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Quantifying the Information Value of Sensors in Highly Non-Linear Dynamic Automotive Systems

2022-03-29
2022-01-0626
In modern powertrains systems, sensors are critical elements for advanced control. The identification of sensing requirements for such highly nonlinear systems is technically challenging. To support the sensor selection process, this paper proposes a methodology to quantify the information gained from sensors used to control nonlinear dynamic systems using a dynamic probabilistic framework. This builds on previous work to design a Bayesian observer to deal with nonlinear systems. This was applied to a bimodal model of the SCR aftertreatment system. Despite correctly observing the bimodal distribution of the internal Ammonia-NOx Ratio (ANR) state, it could not distinguish which state is the true state. This causes issues for a control engineer who is less interested in how precise a measurement is and more interested in the location within control parameter space. Information regarding the dynamics of the systems is required to resolve the bimodality.
Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Technical Paper

A Constant Equivalence Ratio Multi-Zone Approach for a Detailed and Fast Prediction of Performances and Emission in CI Engines

2022-03-29
2022-01-0381
The paper illustrates and validates a novel predictive combustion model for the estimation of performances and pollutant production in CI engines. The numerical methodology was developed by the authors for near real-time applications, while aiming at an accurate description of the air mixing process by means of a multi-zone approach of the air-fuel mass. Charge stratification is estimated via a 2D representation of the fuel spray distribution that is numerically derived by an axial one-dimensional control-volume description of the direct injection. The radial coordinate of each control volume is reconstructed a posteriori by means of a local distribution function. Fuel mass clustered in each zone is further split in ‘liquid’, ‘unburnt’ and ‘burnt’ sub-zones, given the local properties of the fuel spray control volumes with respect to space-time location of modelled ignition delay, liquid length, and flame lift-off.
Technical Paper

Develop Best Practices for Correlating Body Pressure Distribution Test to Simulation

2022-03-29
2022-01-0809
As automotive seating comfort is expected to see an upward trend, virtual comfort analysis is expected to pick up its importance and Body Pressure Distribution (BPD) is foreseen to be the flag bearer in this race towards seat comfort. The shift of focus from BPD testing to virtual comfort analysis has been a positive sign for market. This paper will discuss in detail several different human seating postures during BPD measurement and their influence on seat BPD with the help of virtual comfort analysis tool. This knowledge will be helpful to put more emphasis on several key aspects for capturing BPD maps during real BPD testing (This paper does not discuss any physical testing). When the real-time-tested BPD map would be produced repeatedly with less variation with the analytical BPD map, a comfortable seat design would be achieved in a shorter period in terms of production with greater accuracy
Technical Paper

Data-Driven Set Based Concurrent Engineering Method for Multidisciplinary Design Optimization

2022-03-29
2022-01-0793
In the development of multi-disciplinary systems, many experts in different discipline fields need to collaborate with each other to identify a feasible design where all multidisciplinary constraints are satisfied. This paper proposes a novel data-driven set-based concurrent engineering method for multidisciplinary design optimization problems by using machine learning techniques. The proposed set-based concurrent engineering method has two advantages in the concurrent engineering process. The first advantage is the decoupling ability of multidisciplinary design optimization problems. By introducing the probabilistic representation of multidisciplinary constraint functions, feasible regions of each discipline sub-problem can be decoupled by the rule of product. The second advantage is an efficient concurrent study to explore feasible regions. A batch sampling strategy is introduced to find feasible regions based on Bayesian Active Learning (BAL).
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Windsor Body Test Case Summary

2022-03-29
2022-01-0898
To improve the state of the art in automotive aerodynamic prediction using CFD, it is important to compare different CFD methods, software and modelling for standardized test cases. This paper reports on the 2nd Automotive CFD Prediction Workshop for the Windsor body squareback test case. The Windsor model has high quality experimental data available and a simple geometry that allows it to be simulated with limited computational resources. The model is 1 metre long and operates at a Reynolds number of 2.7 million. The original Windsor model did not include wheels, but a second variant was added here with non-rotating wheels. Experimental data is available for integrated forces, surface pressure and wake PIV surveys. Eight standard meshes were provided, covering the two geometry variants, two near wall mesh spacings (relating to wall resolved and wall modelled) and two mesh densities in the wake (relating to RANS and eddy resolving).
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

22M-0156, Loading Classification for Fatigue Design Applied to Automotive Time-Series

2022-03-29
2022-01-0254
This study focuses on variable amplitude loadings applied to automotive chassis parts experiencing carmaker’s specific proving grounds. They are measured with respect to time at the wheel centres and composed of the six forces and torques at each wheel, within the standard vehicle reference frame. In the scope of high cycle fatigue, the loadings considered are supposedly acting under the structure yield stress. Among the loadings encountered during the vehicle lifetime, two classes stand out: Driven Road: loads measured during the vehicle manoeuvre; Random Road: loads mainly coming from the road asperity. To separate both effects, a frequency decomposition method is proposed before applying any lifetime assessment methods. The usual Rainflow counting method is applied to the Driven Road signal. These loadings, depending on the vehicle dynamics, are time-correlated. Thus, the load spectra is set only thanks to the vehicle accelerations time-measurement.
Technical Paper

Technical Keynote: Durability Validation for Variable Customer Usage

2022-03-29
2022-01-0255
Durability engineering for vehicles is about relating real operational loading to the actual strength of the product and its components. In the first part of this paper, we show how to calculate failure probabilities and safety factors based on the load and strength distributions. We discuss the uncertainty within the estimations, which is considerably large in case of extremely small failure probabilities as required for safety critical components. In the second part, we focus on modelling and simulating the loads based on real vehicle usage. The resulting statistics allows to understand and quantify the usage variability. The idea is to simulate thousands of vehicle life spans of, say, 300.000 km or 15.000 h of operation each. The input data for such simulations can be either geographic data like road network, topography, road conditions, traffic data, and points of interest.
Technical Paper

Large-Angle Full-Field Strain Measurement of Small-Sized Objects Based on the Multi-Camera DIC Test System

2022-03-29
2022-01-0274
Digital Image Correlation (DIC) technology is a powerful tool in the field of experimental mechanics to obtain the full-field deformation/strain information of an object. It has been rapidly applied in industry in recent years. However, for the large-angle full-field strain measurement of small-sized cylindrical objects, it’s still a challenge to the DIC accurate measurement due to its small size and curved surface. In this paper, a measurement method based on the multi-camera DIC system is proposed to study the compressive performance of small-sized cylindrical materials. Three cameras form two stereo DIC measurement systems (1 and 2 cameras, and 2 and 3 cameras), each of which measures a part of the object. By calibrating three cameras at the same time, two stereos DIC coordinate systems can be unified to one coordinate system. Then match the two sets of DIC measurement data together to achieve large-angle measurement of the cylindrical surface.
Technical Paper

Identifying Cybersecurity Focus Areas in Connected Cars Based on WP.29 UN-R155 Attack Vectors and Beyond

2022-03-29
2022-01-0116
The UN working group WP.29 published UN Regulation No. 155, the “Uniform provisions concerning the approval of vehicles with regards to cyber security and cyber security management systems,” which became a binding resolution on January 22nd, 2021 with expectations that at least 54 countries will mandate it starting July 2022. The regulation lists 69 attack vectors directly affecting vehicle cyber security. Car manufacturers, suppliers, government organizations, etc. all stakeholder’s cooperation and efforts are necessary for the successful implementation of the published regulation. The first course of action is to sort these attack vectors according to their expected threat severity levels, so stakeholders can determine the order in which to tackle mitigating said threats. In this paper, using the industry standard DREAD threat modelling, we calculated the severity levels of the attack vectors listed in the WP.29 UN-R155 cyber security regulation.
X