Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

2019-11-21
2019-28-2572
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work.
Technical Paper

High rigidity and light weight bumper material development in India

2019-11-21
2019-28-2553
Vehicle weight reduction becomes important at the view point of fuel efficiency improvement and CO2 reduction in India also as well as developed countries. With this background, High tensile and Super high tensile steel application has become increasing. Similary, weight reduction of big plastic parts like bumper face is one of the most important items, so Honda has developed Thin-wall and light weight bumper face. In the development of light weight bumper, rigidity, impact strength and flowability which are main requirement are cotradictory property. It is necessary to develop new material to achieve this technical concern. Moreover, we verified part shape and thickness optimization to achieve part requirement. Established high property material and part manufacturing technology were applied for current CITY firstly, and it has been expanded to other models sequentially to contribute weight reduction for Honda vehicles.
Technical Paper

AUTOMOTIVE VEHICLE TRANSMISSION SYSTEMS

2019-11-21
2019-28-2521
Abstract:At present there are a few types of transmission system available in automated industry, there might some variation in transmission system but the basic working and principle is still the same. Many big automotive manufacturers use different technologies in their transmission system but they still use the same basic principle in their transmission systems. This new technology which is brought by Koenigsegg has changed the way people think about transmission system. This new transmission system is known as Koenigsegg Direct Drive and is currently used by one automotive manufacturer and in one vehicle only, but it soon might change the way it is now.
Technical Paper

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

2019-11-21
2019-28-2532
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance.
Technical Paper

Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

2019-11-21
2019-28-2538
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts.
Technical Paper

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

2019-11-21
2019-28-2559
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India.
Technical Paper

A Mathematical Approach to Determine Die Wear during Forging Process and Validation by Experimental Technique

2019-11-21
2019-28-2563
The automotive industry is constantly trying to develop cost effective, high strength and lightweight components to meet the emission and safety norms while remaining competitive in the market. Forging process plays an important role to produce most of the structural components in a vehicle. Precision forging technology is used to produce components with little or no flash leading to elimination of machining process after forging. The load acting on the dies during net or near net forging is very high and leads to wear in the die. In order to have a good die it is important that die wear which is an inevitable phenomenon in a bulk metal forming processes is predicted mathematically. In this study a review on the vast number of studies done in the area of wear and various predictive models is carried out.
Technical Paper

To establish the correlation in between Computer Aided Engineering & physical testing of automotive parts returnable case (Stacktainer).

2019-11-21
2019-28-2569
Automotive returnable cases (Stacktainers) are being used to transport the automotive parts through surface & seaways. No automotive manufacturer wants to spend money on woods, paper & cardboard again and again, it`s better to pay once for robust & reusable cases. these provide better protection to parts from its manufacturing to assembly line of vehicle. While transporting, any kind of crack or failure of returnable cases may lead to loss of money, human & time. To ensure the safety, these pallets have to be validated for vibrations coming from surface irregularities, sea waves & load due to stacking of cases one above other. The objective of this study is to establish a correlation in between the physical testing & simulation in Computer added Engineering (CAE) of automotive returnable case (Stacktainers). There are different types of tests considered to validate the returnable case, rough road evaluation, Multi-axial Vibration & strength evaluation.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Determine Thermal Fatigue Requirements for PEPS Antenna Copper Wire over Vehicle Lifetime with defined Reliability Requirements.

2019-11-21
2019-28-2582
Reliability states the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate. And, tests according to GMW specifications represents a minimum of 15 years of vehicle life time with defined Reliability and Confidence level. In this work, actual number of thermal cycles for Thermal Fatigue tests (Thermal Shock and Power Temperature Cycle) are calculated for Copper Wire whose Coffin Manson exponent is 5. Overstressing the PEPS Antenna under thermal fatigue requirement (defined number of thermal cycles based on Reliability and Confidence requirements) will lead to broken Copper wire which will result in component’s functional failure and thus impossible to continue reliability testing. The objective of this paper is to determine thermal fatigue requirements for Antenna’s Copper wire whose Coffin Manson exponent is 5.
Technical Paper

Improved update-over-the-air solution through standardization of ‘software/firmware package format and flash jobs’

2019-11-21
2019-28-2435
This paper investigates and proposes the possibilities of standardizing the software/firmware package format and flash jobs in order to provide the possibility of productizing the update-over-the-air solution regarding on-board vehicle components and make use of it in all OEMs with minimum configuration changes and customization. The update-over-the-air solution in the automotive sector is provided by various suppliers and needs to be customized to meet various OEMs requirements. Possible Variants of OEM requirements are: • Variant 1 o Customer Portal + Backend + vehicle on-board components solution from supplier • Variant 2 o Customer Portal + Backend solution from OEM o Vehicle on-board components from supplier • Variant 3 o Backend from OEM o Customer Portal + vehicle on-board components from supplier ODX, VBF, and many other formats from OEMs include software/firmware packages.
Technical Paper

Paper Title : Connectivity in 2wheeler: Opportunities & Challenges

2019-11-21
2019-28-2437
Abstract: Future of Mobility is mainly driven by 3 main pillar viz Connected , Electrified and Automated Driving. With advancement in Communication Technology supplemented by huge customer Base , Connectivity has proven to deliver better Services to the End-user. The next step in this journey would be to connect the so called “Things” and the Things that we want to connect is the 2 wheeler in the Mobility domain This paradigm shift in the Mobility Landscape is expected to bring plethora of opportunities on one side as well as new challenges that were never witnessed in the realm of Mobility in the Past. This paper focuses on Opportunities in terms of Location Based services, Vehicle Management, Data Analytics, Infotainment , and possible Business scenarios and Models as well as challenges in Terms of Security and Data Ownership Methodology: Analysis of OEM and Supplier strategies/approaches and upcoming trends in connectivity and electrification.
Technical Paper

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

2019-11-21
2019-28-2471
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors.
Technical Paper

FABRICATION AND WEAR CHARACTERISTICS BASALT FIBER REINFORCED POLYPROPYLENE MATRIX COMPOSITES

2019-11-21
2019-28-2570
Generally brake pads are manufacturing by use of asbestos materials, these materials are chemically harmful and toxic, affects human health. The present investigation fabricates polypropylene composites with mixing constant volume [5 Vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt fibre by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition using pin on disc apparatus configuration with hardened steel counter-face at elevated temperature. The load was applied 30N to 70N with the interval of 20N and varying of sliding speed 300 rpm to 900rpm with the interval of 300rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and also increases the frictional force for the effect of basalt fibre content present in the composites. The co-efficient of friction was increases from 0.1 to 0.66 under normal loading condition.
Technical Paper

Structural Optimization based on Fatigue Analysis Results for increase in the payload capacity

2019-11-21
2019-28-2574
In commercial Vehicles industry, customer demands the vehicle with higher payload capacity. In order to achieve the higher payload, the vehicle weight must be reduced. Role of CAE (Computer Aided Engineering) team in the above objective is to provide optimized solution for the currently available designs. There are many capable softwares available in the market for the optimization. But performing optimization on the basis of static or dynamic analysis involves a little risk of design losing the strength. In our organization, we have developed a method, which will eliminate the risk of lower strength of the component. In this method, modified design from the optimization analysis has to undergo the fatigue analysis repetitively until it qualifies both the criteria of optimized design & adequate fatigue strength. In the above process fatigue analysis is time consuming process. To reduce the time taken by fatigue analysis, we are using the frequency based vibration fatigue method.
Technical Paper

SIMULATION OF SOFTENING AND RUPTURE IN MULTILAYERED FUEL TANK MATERIAL

2019-11-21
2019-28-2557
Research and/or Engineering Questions/Objective Plastic automotive fuel tanks made up of blow molded, multi-layered, high-density polyethylene (HDPE) material can take complex shapes with varying thickness. Accidental drop of fuel tank from a height during handling can lead to development of cracks. Damage can also occur due to an impact during a crash. This can be catastrophic due to flammability of the fuel. The objective of this work is to characterize and develop a failure model for the fuel tank material to simulate damage and enhance predictive capability of CAE for chassis and safety load cases. Methodology Different aspects were considered to develop a characterization and modelling strategy for the HDPE fuel tank. Material properties can be influenced by factors such as, service temperature, rate of deformation, state of stress etc.
Technical Paper

Thumb Design and Optimization for Backhoe Loader

2019-10-11
2019-28-0109
Product Engineering organizations are committed to provide solutions with right quality and value to customers. Value improvement and efficient product improvement are key considerations for product engineering. In this paper, Author outlines the summary of Thumb Design and Optimization for Backhoe Loader. This project goal was to come up with own thumb design. The Backhoe thumb attachment was previously a Proprietary Design of the supplier which had two major limitations, limited opportunity of design improvements for resolving customer issues and higher total cost. The paper covers details about overcoming these limitations. In Backhoe loaders, for multiple variants of machines, four different thumbs are used. Small and mid-backhoe machine classes use 4-tine and 2-tine thumb depending upon customer applications. The design team targeted an external customer requirement of a more compact design and internal requirement of accelerating design improvement cycle time.
Technical Paper

A novel method of Improving Ride Comfort of Two Wheeler by Optimization of Seat Parameters.

2019-10-11
2019-28-0013
Two-wheeler plays a significant role in personal transportation in India. People prefer two-wheelers, which has better fuel economy, comfort, and performance. It is vital to enhance comfort, as the seat is in direct contact with the user. Better user comfort improves the vehicle feel and behavior. Dynamic comfort analysis is necessary to understand and improve the vibration characteristics of the human-seat system. The vibration characteristics under analysis are Natural frequency, Maximum transmissibility, Attenuation frequency, and Transmissibility at 6 Hz. A test set-up was developed to collect data samples with different seat characteristics. The data collected from the seat are IFD, Hysteresis, Air-Permeability, Resilience, Thickness, and Mass. The relation between the seat parameters and vibration characteristic is established by statistically analyzing the data. Best seat was identified by ranking vibrational characteristics.
Technical Paper

Systematic work flow for fatigue life prediction of Automotive components

2019-10-11
2019-28-0021
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test, are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation.
Technical Paper

Banana Stem Based Activated Carbon as Filler in Polymer Composites for Automobile Applications

2019-10-11
2019-28-0093
Activated carbon was produced from a new part of banana plant namely true stem in this current research and used as fillers in polymer composites for automobile application. True stems of banana plants are the main wastes in banana or fruit markets which refer to the remains after banana fruits are removed from the supporting stems. Conversion of raw material into activated carbon particles is done by chemical and heat activation. The raw material used here were dried samples of banana plant’s true stem. This material was heated in a crucible at 400°C and then powdered. These crushed samples were activated using hydro-chloric acid at 120°C for 5 hours and finally in a furnace for thermal activation at 700°C for 1 hour. These particles were incorporated as fillers in composites at proportions of 10%, 15%, 20% and 25%. The activated carbon samples were characterized by determining its fixed carbon content and bulk density.
X