Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

BlockChain - A disruptive technology in Automotive Industry

2019-11-21
2019-28-2436
When i decided to buy a second hand car from a dealer to learn driving, i was sceptical of the mileage usage for which a particular price was charged. Though the well know dealer told me a about the car, its previous usage, the fact that there were no accidents, and so on, there was no reliable way to verify what the dealer was offering. In order to solve such issues, we are looking at a disruptive technique which will cause a complete paradigm shift - by using blockchain technique. This paper talks about the basics of the blockchain technology and its relevance in automotive industry. We also look at some real life scenarios, where this technology helps to build reliability as one of the implicit requirements. We will start looking at how the block chain will help to reliably select the right components in the assembly line. Also we look at different aspects of software architecture like security and how blockchain can provide solutions in this area.
Technical Paper

Location based emergency call enabler

2019-11-21
2019-28-2457
M. Priyanka, Mahindra & Mahindra, India Sai Himaja Nadimpalli , Mahindra & Mahindra, India Keywords-Safety, Connectivity, GPS Research and/or Engineering Questions/Objective: There are many times the driver or co-passenger can experience emergency conditions whenever the vehicle is running or it is in static. These kind of situations are tough to handle even if one is victimized . The victim can be rescued on time if proper information about the situation would reach his friends or family . Limitations: In existing system, if the accidental crash happens then signal from airbag unit will wake up the mobile, Once this wake up call happens,it will activate the gsm module. The emergency contacts stored in the mobile will be dialed up and the victim can convey his emergency situation through that. The driver will be rescued only if crash happens. There is no system to rescue the driver if heart attack happens when he is driving.
Technical Paper

Changes in user experiences of electric vehicles

2019-11-21
2019-28-2489
Research Objective The objective of the paper is to research what are the changes in experiences being brought about due to the advent of Electric Vehicles (EVs). EVs are silent, have less complex propulsion system, and have free space under the hood, amongst other things. Each change brings about both good and bad experiences across the spectrum of users. Some of the bad experiences can be safety incidents leading to death as well. Researching the areas that are harmful to end users, including pedestrians, will be our focus area. Methodology Our methodology will look at the changes at the vehicle architecture level which are inherent to the EV design. Research how are the experiences so far due to these changes. Are these just inconveniences or safety hazards? EVs have excellent NVH characteristics. A farmer may love a silent tractor, but a racing enthusiast may not like a relatively silent sports car.
Technical Paper

FABRICATION AND WEAR CHARACTERISTICS BASALT FIBER REINFORCED POLYPROPYLENE MATRIX COMPOSITES

2019-11-21
2019-28-2570
Generally brake pads are manufacturing by use of asbestos materials, these materials are chemically harmful and toxic, affects human health. The present investigation fabricates polypropylene composites with mixing constant volume [5 Vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt fibre by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition using pin on disc apparatus configuration with hardened steel counter-face at elevated temperature. The load was applied 30N to 70N with the interval of 20N and varying of sliding speed 300 rpm to 900rpm with the interval of 300rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and also increases the frictional force for the effect of basalt fibre content present in the composites. The co-efficient of friction was increases from 0.1 to 0.66 under normal loading condition.
Technical Paper

Development of low cost closed crankcase ventilation with oil mist separation system on light duty diesel engine.

2019-11-21
2019-28-2578
Currently automotive industry is facing bi-fold challenge of reduction in Greenhouse gases emissions as well as low operating cost. On one hand Emission regulations are getting more and more stringent on other hand there is major focus no customer value proposition. Engine blow by gases are one of the source of Greenhouse gases emission from engine. Blow by gases not only consist of unburn hydrocarbons but also carry large amount of oil. If oil is not separated from these gases, it will led to major oil consumption and hence increase total operating cost of Vehicle. In this paper, effort has been taken to develop a low cost closed crank case ventilation with oil mist separation system on diesel engine.
Technical Paper

FOUR WAY ADJUSTABLE HEAD RESTRAINT SYSTEM

2019-11-21
2019-28-2528
To reduce the incidence of whiplash-associated disorders caused by rear impacts, head restraints should be closer to the head which decreases the amount of relative motion and it is believed to reduce the risk of soft tissue neck injury. Drivers are raising complaints that the head restraint causes discomfort by interfering with their preferred head position, forcing them to select a more reclined seat back angle [1]. This paper is about the importance of head restraint system and how it can be improved by adjusting the angle between the head restraint and passenger`s head. It is essential to carry out research on head restraint that can be adjusted in forward and backward direction letting the cost of seats remain in budget.
Technical Paper

Development and Investigation of Jute/Linen Fibre Reinforced Polymer Composite

2019-10-11
2019-28-0171
In recent automotive era, natural fibre reinforced with thermoset polymer composites have been incorporated by automotive industries especially for interiors, car body panels, dashboards, headliners etc. Natural fibres offer many affirmative qualities such as less weight and cost, especially in reduction of carbon di-oxide which is a major threat to the planet from the automotive sectors. The current work deals with the study of the potential usage of mineral powder (industrial by-product) in polymer. In this paper, hybrid composites with natural fabrics reinforcements and mineral powder as filler to matrix material are developed. The mineral powder used as filler is silica fumes which is a by-product of industries. The hand lay-up methodology is employed to fabricate the composite. The composites with and without mineral filler material are developed. The mechanical properties of the composites are assessed.
Technical Paper

Preliminary Study of Perceived Vibration Quality for Human Hands

2019-06-05
2019-01-1522
A large body of knowledge exists regarding the effects of vibration on human beings; however, the emphasis is generally on the damaging effects of vibration. Very little information has been published regarding the effect of vibration on perceived consumer product quality. The perceived loudness of a product is quantified using the Fletcher-Munson equal loudness curves, but the equivalent curves for perceived vibration amplitude as a function of amplitude and frequency are not readily available. This “vibration quality” information would be valuable in the design and evaluation of many consumer products, including automobiles. Vibration information is used in the automobile design process where targets for steering wheel, seat track, and pedal vibration are common. For this purpose, the vibration information is considered proprietary and is generally applicable to a narrow frequency range. In this investigation, work paralleling the original Fletcher-Munson study is presented.
Technical Paper

Comfortable Head and Neck Postures in Reclined Seating for Use in Automobile Head Rest Design

2019-04-02
2019-01-0408
Little information is available on passenger preferences for posture and support in highly reclined seat configurations. To address this gap, a laboratory study was conducted with 24 adult passengers at seat back angles from 23 to 53 degrees. Passenger preferences for head and neck posture with and without head support were recorded. This paper presents the characteristics of the passengers’ preferred head support with respect to thorax, head, and neck posture.
Technical Paper

Real Time 2D Pose Estimation for Pedestrian Path Estimation Using GPU Computing

2019-04-02
2019-01-0887
Future fully autonomous and partially autonomous cars equipped with Advanced Driver Assistant Systems (ADAS) should assure safety for the pedestrian. One of the critical tasks is to determine if the pedestrian is crossing the road in the path of the ego-vehicle, in order to issue the required alerts for the driver or even safety breaking action. In this paper, we investigate the use of 2D pose estimators to determine the direction and speed of the pedestrian crossing the road in front of a vehicle. Pose estimation of body parts, such as right eye, left knee, right foot, etc… is used for determining the pedestrian orientation while tracking these key points between frames is used to determine the pedestrian speed. The pedestrian orientation and speed are the two required elements for the basic path estimation.
Technical Paper

Influence of Partial Recirculation on the Build-Up of Cabin Carbon Dioxide Concentrations

2019-04-02
2019-01-0908
Carbon dioxide exhaled by occupants remains within the cabin during operation of HVAC unit in recirculation mode. The CO2 inhaled by the occupants goes into their blood stream that negatively affects occupant’s health. ASHRAE Standard 62 specifies safe levels of carbon dioxide in conditioned space for humans. The CO2 concentration limit per ASHRAE is 700 ppm over ambient conditions on a continuous basis. In a recent investigation the author had developed a model to predict cabin carbon dioxide concentrations for recirculation mode as a function of time, number of occupants, vehicle speed, body leakage characteristics, occupant lung capacities and concentrations of the carbon dioxide coming out from occupant’s mouth, blower position and vehicle age. This developed model has been modified to simulate cabin airflows from 100% recirculation mode to 100% outside air mode, i.e., for any percentage of partial recirculation.
Technical Paper

Investigating Collaborative Robot Gripper Configurations for Simple Fabric Pick and Place Tasks

2019-04-02
2019-01-0699
Fiber composite materials are widely used in many industrial applications - specially in automotive, aviation and consumer goods. Introducing light-weighting material solutions to reduce vehicle mass is driving innovative materials research activities as polymer composites offer high specific stiffness and strength compared to contemporary engineering materials. However, there are issues related to high production volume, automation strategies and handling methods. The state of the art for the production of these light-weight flexible textile or composite fiber products is setting up multi-stage manual operations for hand layups. Material handling of flexible textile/fiber components is a process bottleneck. Consequently, the long term research goal is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. Collaborative robots allow for interactive human-machine tasks to be conducted.
Technical Paper

Testing of Welded and Machined A36 Steel T-Joint Configuration Specimens

2019-04-02
2019-01-0535
For this latest SAE Fatigue Design and Evaluation project, fatigue tests were run by loading, in bending, both welded and machined T-Joint specimens that have the same geometry. The test rig setup consisted of a horizontally mounted actuator, with pinned joints at both ends, where the load is applied to the top of the vertical leg of the “upside down T” of a T-Joint specimen, while the horizontal legs of the “upside down T” were clamped to the bedplate. Specimens were tested until failure or until the specimen was unable to carry the commanded load. They were cycled under constant amplitude (at several load levels and R ratios), block cycle, and variable amplitude loadings. Welded and machined T-Joint specimens of the same geometry were included in the test plan such that fatigue life predictions could be compared to test lives for each case. Those comparisons would demonstrate the methodology’s relative predictive ability to manage welds, residual stress, etc...
Technical Paper

Antenna Design Methodology for Remote Keyless Entry: The Effects of the Human Body and Vehicular Antenna Positions on Coverage

2019-04-02
2019-01-1058
In this era of technologies, Remote Keyless Entry (RKE) system has become an integral part of motor vehicles. Over the years, a lot of functionalities have been added to RKE systems. To achieve functional communication between key-fob antennas and vehicular receiving antennas, it is necessary to analyze the impact of a human body as well as the receiving antenna placements on the vehicle’s body. Taking these variations into account during the antenna development phase becomes expensive and tedious since achieving an efficient design would require several iterations, testing, and modification, in the design. Hence, Computational Electromagnetic (CEM) techniques become a feasible solution to explore such scenarios and adopt necessary modifications as needed. This paper introduces a methodological process of designing RKE antennas using 3D CEM Simulation tool; namely Altair Feko.
Technical Paper

Study of Optimization Strategy for Vehicle Restraint System Design

2019-04-02
2019-01-1072
Vehicle restraint systems are optimized to maximize occupant safety and achieve high safety ratings. The optimization formulation often involves the inclusion or exclusion of restraint features as discrete design variables, as well as continuous restraint design variables such as airbag firing time, airbag vent size, inflator power level, etc. The optimization problem is constrained by injury criteria such as Head Injury Criterion (HIC), chest deflection, chest acceleration, neck tension/compression, etc., which ensures the vehicle meets or exceeds all Federal Motor Vehicle Safety Standard (FMVSS) requirements. Typically, Genetic Algorithms (GA) optimizations are applied because of their capability to handle discrete and continuous variables simultaneously and their ability to jump out of regions with multiple local optima, particularly for this type of highly non-linear problems.
Technical Paper

Automotive Gigabit Ethernet Press-Fit Header Design and Performance

2019-04-02
2019-01-0475
As the demand for Gigabit Automotive Ethernet based on single unshielded twisted pair continues to increase, there is a need to expand the market to include robust automotive grade solderless technology. The new Automotive Ethernet solution features Automotive press fit contacts that can both handle the harsh environments of the application and be applied to the PCB without the need for a soldering process. The solution at hand performs up to 1Gbps speeds without the need for current product plastic header housing redesign, which makes the solution compatible with its through-hole counterpart. Other advantages of a solderless solution include the increase in the amount of materials that can suit the application once the temperature requirements of the system decrease.
Technical Paper

Instrumented Steering Wheel for Accurate ADAS Development

2019-04-02
2019-01-1241
We introduce in this paper a new Instrumented Steering Wheel (ISW) for ADAS development. The ISW has been designed, constructed and employed with satisfactory results. The ISW is able to measure three forces, three moments and the grip force at each hand of the driver. The ISW has been used for ADAS activities on an instrumented road vehicle. The aim was to use both the vehicle states and the ISW data for evaluating the driver behaviour. Two research activities were performed. The first activity refers to monitoring the driver behaviour during tests on a track. The second activity refers to the use of haptic ISWs, able to improve the ADAS systems. Referring to the first activity, the greatest majority of drivers applied always the same sequence of forces (pull, radial, tangential) either during emergency manoeuvres, either during slow speed curving.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Technical Paper

Occupant Kinematics and Loading in Low Speed Lateral Impacts

2019-04-02
2019-01-1027
Instrumented human subject and anthropomorphic test device (ATD) responses to low speed lateral impacts were investigated. A series of 12 lateral collisions at various impact angles were conducted, 6 near-side and 6 far-side, with each test using an ATD and one human subject. Two restrained female subjects were utilized, with one positioned in the driver seat and one in the left rear seat. Each subject was exposed to 3 near-side and 3 far-side impacts. The restrained ATD was utilized in both the driver and left rear seats, undergoing 3 near-side and 3 far-side impacts in each position. The vehicle center of gravity (CG) change in velocity (delta-V) ranged from 5.5 to 9.4 km/h (3.4 to 5.8 mph). Video analysis was used for quantification and comparison of the human and ATD motions and interactions with interior vehicle structures. Human head, thorax, and low back accelerations were analyzed. Peak human subject head resultant accelerations ranged from 0.9 to 36.8 g’s.
Technical Paper

Head and Neck Loading Conditions over a Decade of IIHS Rear Impact Seat Testing

2019-04-02
2019-01-1227
Rear-end impacts are the most common crash scenario in the United States. Although automated vehicle (AV) technologies, such as frontal crash warning (FCW) and automatic emergency braking (AEB), are mitigating and preventing rear-end impacts, the technology is only gradually being introduced and currently has only limited effectiveness. Accordingly, there is a need to evaluate the current state of passive safety technologies, including the performance of seatbacks and head restraints. The objective of this study was to examine trends in head and neck loading during rear impact testing in new vehicle models over the prior decade. Data from 601 simulated rear impact sled tests (model years 2004 to 2018) conducted as a part of the Insurance Institute for Highway Safety (IIHS) Vehicle Seat/Head Restraint Evaluation Protocol were obtained.
X