Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cathodic Protection of Brake System Components

2021-10-11
2021-01-1275
The work investigates the use of cathodic protection -based strategies (e.g. sacrificial anodes) with the aim of extending the corrosion resistance of Aluminum components to be used in disc brake systems. Lab-scale electrochemical measurements, including voltammetry and zero resistance ammetry (ZRA), are used to: a) define the requirements of a cathodic protection system for a 42200 Aluminum alloy; b) evaluate the protection capability of a Zn-based sacrificial anode; and c) demonstrate an extended corrosion resistance of the protected part even in the presence of a galvanic coupling, with respect to the unprotected condition.
Technical Paper

Thermomechanical Instabilities in Metal-Free Friction Materials Using a Nonlinear Transient Simulation Approach

2021-10-11
2021-01-1286
The invention of metal-free friction materials is gaining popularity in the manufacturing of brake pads and clutch friction discs because of the negative factors associated with metals such as copper. To gain more insight into the failure mechanism of the recent invention during brake or clutch applications, a nonlinear transient thermomechanical model is established using Finite Element Code. The model is based on a two-dimensional configuration for an investigation on the onset of TMI (Thermo-Mechanical Instability) during sliding contact in such material. The model is validated by comparing the transient simulation results for a full-contact regime to the result from the existing eigenvalue method. A parametric study is carried out to examine how the thermal conductivities and the elastic moduli influence TMI. The simulation results show that the thermal conductivities in the transverse direction and elastic moduli in the longitudinal direction can stabilize the system.
Technical Paper

A Molecular Dynamics Study of Tribological Properties of Silicon Carbide as a Metal-Free Friction Material

2021-10-11
2021-01-1284
Friction materials containing metal ingredients used in the automotive industry can cause unfavorable environmental impacts. Existing laws and regulations require heavy metals in brake pads to be phased out of production. Substitutions for metals in friction materials, however, may introduce operational safety issue and other unforeseen problems. In the current study, a molecular dynamics model based on LAMMPS has been developed to study the effect of material composition, density, and geometric configurations on the tribological, mechanical, and thermal properties of silicon carbide under various contact conditions at the atomic level. Simulations which incorporate interfacial contact between surface asperities were performed to predict the elastic modulus, thermal conductivity, wear rate, and coefficient of friction. The resulting predicted properties may help enhance the performance of engineered metal-free friction materials against thermal-mechanical failures.
Technical Paper

Chemistry of the Brake Emissions: Influence of the Test Cycle

2021-10-11
2021-01-1300
The reliable chemical characterization of non-exhaust emissions generated by brakes is of fundamental importance in order to provide correct information for source apportionment studies as well as for their toxicological and environmental assessment. Nowadays, the best option to obtain samples of PM10 emissions composed only by material worn from the tribological interface, i.e. the braking disc (BD) and the friction material (FM) rubbing surfaces, is to sample them on suitable collection filters at a dedicated dyno-bench, during a standard braking test cycle. In particular, the use of enclosed dyno-bench is necessary for excluding other spurious contributions from the environment, while defined test cycles are necessary to simulate standard driving conditions.
Technical Paper

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

Transfer Film Composition and Characteristics in Copper-Free NAO Brake Pads

2021-10-11
2021-01-1278
Copper-free non-asbestos-organic (NAO) brake pads have been developed to satisfy the copper content regulations in North America. Copper-free NAO brake pads are required to have a stable friction coefficient owing to the electrification of the control systems, as well as to exhibit improved wear resistance to reduce brake dust emissions. Our previous study indicated that the transfer film formed on the rotor surface affects both the friction coefficient stability and amount of wear. In this study, we investigated how different types of inorganic fillers affect the transfer film formation and its composition in a wear test controlled by temperature. It was confirmed that the main component of the transfer film was iron oxide derived from the rotor. Furthermore, the contained components changed according to the appearance of the rotor surface after each wear test.
Technical Paper

A New Approach to Describe Thermal Aging of Automotive Catalysts Containing Precious Metal Alloys

2021-10-04
2021-01-5095
Regarding thermal real-world aging of automotive catalysts, no deeply developed model or correlation is yet available. Therefore, a new method is developed. A diesel oxidation catalyst (DOC) is aged in the oven and indicated a systematic crystallite growth. Additionally, catalytic deactivation is only dependent on the crystallite size. The crystallite size acts as an indicator for the precious group metal (PGM) surface. This determines a quantitative correlation between the temperature stress, the crystallite size, and, finally, the catalytic activity for oven-aged samples of a DOC. On the basis of this result, the method for the description of oven aging is worked out. It is a physical model that gets as input parameters the aging temperature and aging time for oven aging. This information can be used to calculate the crystallite growth. Further, the corresponding catalytic activity for all species (NO, CO, HC) can also get calculated.
Technical Paper

Vibration Analysis of Fully Perforated Rectangular Plates with Circular Perforations

2021-10-01
2021-28-0195
Perforated plates have a variety of applications in different fields, some of which are agriculture, aerospace, acoustics, automotive, manufacturing, and mining. Owing to its usability in diverse technological domains, a considerable amount of research has been done to understand the various mechanical characteristics of fully perforated plates. Be that as it may, vibration characteristics of fully perforated rectangular plates made of SAE 416L Stainless steel with parallel and zig-zag pattern of perforations have not been reported yet and thus, this work aims to bridge the identified gap by using the finite element method. The required models are generated and simulated using respective computational softwares. The diameter of the perforation and sheet thickness are the parameters of variation, whose effects on the first six modal frequencies of the rectangular plate are analyzed and documented in this study.
Technical Paper

Investigation of High-Velocity Oxy-Fuel Thermal spray Coating over Mild Steel Surface as Replacement for Stainless Steel Material

2021-10-01
2021-28-0261
The critical components in earlier were manufactured by mild steel but due to low corrosion resistance, stainless steel and aluminium alloy are being utilised. However a component of aluminium alloy has to be enriched by anodizing for long durability and better corrosion resistance. But peel off, pit formation, low adhesion and white rust formation are still the downfalls faced by the industries in the coated components over cyclic duration. High-Velocity Oxy-Fuel (HVOF) thermal spraying is an adaptable method that can produce high-density coating with less than 1% porosity, high resistant to chemical environment providing better adhesion and increase the life of mating components. Though stainless steel and anodized aluminium alloy offers far superior life span and corrosion resistance but still more expensive than mild steel.
Technical Paper

Assessment of Tribological Characteristics of Stir Cum Squeeze Cast AlSi7Mg with x wt % Flyash and 3wt % MoS2 Hybrid Composites

2021-10-01
2021-28-0260
his research work aims to investigate the effect of flyash and MoS2 lubricant particles on the tribological properties of AlSi7Mg alloy fabricated through stir cum squeeze casting process. AlSi7Mg alloy is a supreme favourable industrial aluminium alloy owing to its exceptional casting ability, corrosion resistance and good strength to weight ratio. Stir casting is an effective and capable processing route for making aluminum composites with enhanced properties. Additionally, to achieve enhanced properties and a pore-free structure, stir cum squeeze casting processing was used to fabricate aluminium matrix composites. In the experimental investigation, AlSi7Mg alloy was reinforced with 0, 5, 10wt% flyash and 3wt% MoS2 and processed by stir cum squeeze casting method.
Technical Paper

Effect of Weld Speed on Joint Quality of Nd: YAG Laser Welded Inconel 718 Alloy Weldments

2021-10-01
2021-28-0263
Inconel 718, a nickel based superalloy is used in all kinds of applications where outstanding strength and corrosion resistance are essential. The Inconel 718 alloys joints from sheets of 1mm thickness are fabricated using a 4 kW Nd: YAG laser welding equipment. The influence of welding speed on the weld bead ripples, weld morphology, defects and the mechanical properties are investigated. Microstructure of the weld fusion zone, Heat Affected Zone (HAZ) and the weld ripple structure were analyzed using optical microscope and the scanning electron microscope. The weldments obtained were with nominal cracks, porosity and shape imperfections that signifying Nd: YAG laser welding as an effective method for fabricating joints of Inconel 718 of thickness 1mm. The weld fusion zone consists of fine dendritic structure and HAZ is found with columnar grain structure.
Technical Paper

An Experimental Investigation on Hot Cracking and Properties of TIG Welded AA2014 Alloy using Continuous and Pulsed Current

2021-10-01
2021-28-0262
AA2014 Aluminum alloys are most widely used for automobile and aerospace structures where specific strength is important. Hot cracking is a major problem while welding these alloys. In the present investigation, the metallurgical studies, viz, hot cracking sensitivity, microstructure and the mechanical properties, viz, hardness and tensile strength of the 4 mm thickness AA2014 aluminum alloy were studied using two different methods. The first method involves TIG (Tungsten Inert Gas) welding with continuous current process and the second method involves TIG welding with pulsed current process. In both the process commercial argon pure gas was used as a shielding gas. The results showed that hot cracking sensitivity was decreased when the specimen was welded using pulsed current process compared to continuous current process.
Technical Paper

Tribological Evaluation of Organic Frictional Composites Filled with Various Nano-Solid Lubricants

2021-10-01
2021-28-0259
Incorporating of organic fibers originated from plants in polymer composite have gained significant attention over a period of time as they provide eco-friendly lighter composites. The increasing demand by automotive sectors for wear and frictional areas where the conservation of energy is concerned is expected with addition of nano -solid lubricants. Our aim is to fabricate organic frictional composites of basalt fiber reinforced polymer composites along with three possible combination of nano - solid lubricants like (1) graphite (2) graphene (3) molybdenum disulfide through hot press technique. The outcome of the tribological tests (by varying load and sliding velocity) indicates that these three-organic fiber-based polymer composites have been effectively modified by nano-solid lubricants leading to significant enhancement. In which molybdenum disulfide- based brake pad material is an attractive material to replace the practical problems in automotive sector was the key finding.
Technical Paper

Microstructural Changes and Mechanical Properties Upgrading Over Friction Stir Processing Strategies on A356 Alloy with Tungsten Nano Particle Surface Layer Composites

2021-10-01
2021-28-0269
Friction stir processing (FSP) is a typical process for refinement changes of microstructure, enhance material's mechanical properties, and fabricating surface layer composites. The cast A356 surface composites were fabricated via Friction Stir Processing (FSP) and the enhancement of it’s metallurgical and mechanical properties are studied and conveyed in this research study. The three combinations of test samples of FSP'ed cast A356 alloy, FSP'ed cast A356 FSP with tungsten nanoparticle addition (5 and 10 vol%) were considered to fabrication under fixed parametric conditions like tool rotational speed of 1000 rpm, a load acting 9 kN,./ tool travel speed of 20 mm min−1 through four number of tool travel passes respectively. Obtained FSP'ed samples were exposed to microstructural, tensile strength tests and fracture surface morphology analysis were carried out to record the responses.
Technical Paper

Experimental Study on SS 304 Sheet Metal for Bending Process Optimization using Response Surface Method

2021-10-01
2021-28-0268
Productivity plays a vital role in manufacturing processes as well as in service. Sheet metal bending process is a type of forming process that has been used by the wide range in industries. There are several tangible and intangible factors affecting the production rate during the bending process. Spring back is one of the severe factors which affects the production rate, especially in stainless steel material. The spring back is mostly affected by material properties, sheet thickness, bending radius, die sizes and component geometry. In this paper, the spring back is studied by the effect of various parameters such as rectangle/oblong slots with varying pitch distance and without slots and bending time in the stainless-steel material 304 grade in V-air bending machine. The experimental data are evaluated by means of the Response Surface Method (RSM). Finally, it was observed that explored results have the betterment of the production rate with connection to spring back.
Technical Paper

Application of Taguchi Approach on Wire Electrical Discharge Machining of SS304

2021-10-01
2021-28-0271
SS304 (Stainless Steel 304) is a nickel- chromium based alloy, that is extensively used for the applications like cryogenic vessels, valves, refrigerator equipment and evaporators because of its high corrosion resistance, ductility and ability to remain as solid up to a temperature of 14000 C. SS304 is one of the tough to machine materials by conventional methods of machining. Wire Electrical Discharge Machining (WEDM) facilitates the ease of machining complicated cuts with hard to machine, conductive materials where high surface finish is required. In this investigation, a study has been done on WEDM of SS304 and mainly to optimize the process parameters during the machining of SS304 by using Taguchi’s analysis. Taguchi’s DoE approach is used to plan the experimental runs and by considering the process parameters such as pulse on time, pulse off time and peak current at three different levels the experiments were conducted.
Technical Paper

Evolution of A356 with Flyash Composites on Metallurgical Mechanical and Tribological Behaviour under Dry and Wet Conditions

2021-10-01
2021-28-0272
Among all metal matrix composites, A356 is the most applicable matrix due to its low density and exhibits nominal strength with soft nature. This proposed study is concerned with the examination of mechanical and tribological behavior of virgin A356 alloy and A356 reinforced with 10wt.% power plant waste flyash particles composites were processed by liquid metallurgy stir cum squeeze casting technique. The fabricated composites expose enhanced higher hardness when compared to the virgin A356 alloy due to the presence of flyash particles in the matrix. The wear and friction behavior of casted samples were evaluated with a pin on disk tribometer apparatus under dry and wet sliding environment at the presence of lubricant (SAE 80W-90) by varying sliding load of 10N-40N and sliding velocity of 1-3 m/s respectively. Wear rate increase with the increasing load and sliding velocity.
Technical Paper

Enhancement in Tribological Properties of Squeeze Casted A356 Alloy Through T6 Heat Treatment Process

2021-10-01
2021-28-0265
The primary goal of this analysis is to investigate the effect of heat treatment processes on the tribological properties of squeeze cast A356 Alloy. Because of its excellent mechanical and tribological properties, the proposed A356 alloy has a wide variety of uses in the automotive industry. Squeeze casting is a cost-effective and promising method of producing aluminium alloy with better properties and a pore-free construction. Furthermore, the properties can be improved using post-processing techniques such as heat treatment, and residual stresses are eliminated as a part of the heat treatment procedure. The aim of this study is to look into the impact of post-processing methods on the tribological properties of squeeze cast A356 alloy. The prepared samples' wear resistance and friction characteristics were measured using a pin-on-disc tribometer test setup under dry sliding conditions with an applied load of 10, 20, 30, and 40N with a steady sliding velocity of 3 m/s.
Technical Paper

Machinability Studies on Wire Electrical Discharge Machining (WEDM) of AA2014 Alloy using Taguchi Grey Approach

2021-10-01
2021-28-0264
AA 2014 is a copper based aluminium alloy which is having exceptional mechanical characteristics such as better strength, ductility and lesser fatigue. AA 2014 is most generally employed in various engineering applications such as fabrication of structural components, defence applications and manufacturing of aerospace components. Also, this material possess better resistant to corrosion which makes this material best suitable for numerous engineering applications. Unconventional methods of machining have been evolved for producing intricate shapes in electrically conductive components. Wire Electrical Discharge Machining (WEDM) is one among the unconventional machining method which is used for making intricate shape on any electrically conductive work material. In this work, an experimentation has been carried out on WEDM of AA 2014 alloy, employing Taguchi’s technique.
Technical Paper

Microstructure and Tribological Characteristics of the Cast A356 with Tungsten Nanoparticles-Based Surface Layer Composite Developed by Friction Stir Processing Route

2021-10-01
2021-28-0267
In this appraisal, The Friction Stir Processing (FSP) was utilized to incorporate 5vol% and 10vol% of Tungsten nanoparticles for the modification of the as-cast A356 alloy properties. Keeping an eye on the stipulation to improve the wear and friction behavior of the cast A356 alloy stir zone surface, the tribometer test was done under dry sliding conditions in a pin on disc instrument on different parameters such as load applied (10-40N) and sliding velocity 1and 3m/s respectively. As a result, confirmed through scanning electron microscope image fine and equiaxed grains in the stir zone surface followed by agglomeration free uniform distribution of tungsten nano particles in the matrix as it constitutes of higher value of microhardness.
X