Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Potential and Challenges for Application-Specific Friction Characteristics of Race Brake Pads

2021-10-11
2021-01-1282
As a race driver hits the pedal to trigger the braking event, a dynamic load transfer takes place in the car. This is a similar kind of weight transfer experienced on the road while stopping any vehicle abruptly. Modern race cars such as FIA-regulated Grand Touring Car classes GT3 and LMGTE produce a significant aerodynamic downforce at a reasonably high efficiency level. In this type of high downforce race cars, load variations originated by aerodynamics are added onto the mass transfer. The combination of these effects provide a braking effect with this type of cars a highly transient character. At the same time, our customers are facing the challenge of strict technical regulations, usually forbidding brake control systems. In motorsport competition, car performance is of primary priority to help our customers win championships.
Technical Paper

Energy Saving Speed Planning Prompting System for Commercial Vehicle Driving In Mountain Area

2021-10-11
2021-01-1279
The mountainous roads are very complex and changeable. When commercial vehicles are driving in mountain areas, the using of brakes can not only reduce the fuel economy, but also increase the brake wear. The aim of this system is utilizing the terrain changes of mountainous roads to guide the driver to control the accelerator pedal reasonably through the mutual transformation of kinetic energy and gravitational potential energy for reducing the energy loss caused by braking on downhill road. The theoretical control points of releasing the accelerator pedal on the uphill road are determined based on the road digital elevation model (DEM) information and the vehicle dynamic model.
Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Technical Paper

Predictive Maintenance of Commercial Vehicle Brakes using Acoustic Monitoring

2021-10-11
2021-01-1280
This study evaluated the performance of a new approach for detecting problems with commercial vehicle brakes based on the analysis of sounds emitted during braking. Commercial vehicle brakes emit ultrasonic energy inaudible to humans as part of the friction process, and the spectral distribution of these sounds is highly dependent on the mechanical condition of the brakes. Data collected from a commercial vehicle fleet found that the acoustic signature changes as friction linings wear. This conforms with the acoustic theory that the resonant frequency of an object increases with its decrease in mass. The use of this information to inform maintenance operations is promising in that the scheduling of visual brake inspections could be based on acoustic wear patterns rather than arbitrary time intervals and the observation of anomalous signals that might indicate more immediate concerns.
Technical Paper

SCV Chassis Performance Optimization Through Parametric Beam Modelling & Simulation

2021-10-01
2021-28-0183
In automotive product development, design and development of the chassis plays an important role since all the internal and external loads pass through the vehicle chassis. Durability, NVH, Dynamics as well as overall vehicle performance is dependent on the chassis structure. Even though passenger vehicle chassis has a ladder frame or a monocoque construction, small commercial vehicle chassis is a hybrid chassis with the cabin welded to the ladder frame. As mileage is critical for sale of SCVs, making a light-weight chassis is also important. This creates a trade-off between the performance and weight which needs to be optimized. In this study, a parametric beam model of the ladder frame & the cabin of the vehicle is created in COMSOL Multiphysics. The structure has been parameterized into the long member & crossmember geometry & sections. The model calculates the first 12 natural frequencies, global stiffness, and weight.
Technical Paper

Reconstruction of an Auto-Rickshaw Frontal Crash using FE Simulation with Validation using Captured Crash Video from India

2021-10-01
2021-28-0257
The three-wheeled "Auto-Rickshaws" [Auto] plays a significant role in road transportation, especially in India. The crash safety and reconstruction studies have been widely used in four-wheelers, whereas the availability of such data for Auto was limited. In recent times, accident data processing from available videos is being utilized to observe the crash scenario. The crash parameters can be given as inputs to the crash analysis. This paper focuses on the process the real-world accident data and study crash characteristics. With limitation in the availability of detailed injuries post-crash, the study was restricted to reconstructing crash kinematics and estimating indicative injuries to the driver. The source of video data is videos of crash available in public domains like YouTube. PYTHON video processing tool has been used to process the set of real-world accident video data.
Technical Paper

An Experimental Approach to Monitor the Clutch Thermal Condition to Increase the Clutch Life

2021-10-01
2021-28-0281
One of the top problems that every Indian automobile manufacturer struggles to manage is the clutch early failure less than 30000 Km. This is mainly due to the extreme heating of the friction lining due to the real-world user profile in the Indian market and users inappropriate driving behaviors like Overloading the goods more than the manufacturer’s recommendation, non-recommended attachments and increased wheel size, Thick traffic leading to high level of clutch modulation and Clutch riding while running and launching the vehicle at higher gears. Although many simulation and testing are done during the development phase, above listed real world user profile and customer driving habits are inevitable by any automobile manufacturer. Hence the prime goal of this experimental research is to indicate or alert the user on the clutch thermal condition due to the driving habit and to encourage the user on right driving habits.
Technical Paper

Regeneration of Waste Energy from Tire Strain and Rapid Charging Through Super-Capacitor for Electric Vehicles

2021-10-01
2021-28-0278
Vehicle tyres lead us to move miles and miles, which faces a lots of heat and stresses all that energy should not go in vain, Peizoelectric materials are materials which have the ability to convert the applied mechanical stress into electrical charge. Our experimental work deals with the conversion of heat and stress of the tyre into an electrical energy by using piezoelectric transducer followed by rapid collection and storage of electric energy using super-capacitor. For this experimental study, electric bike was taken and conventional tyres was replaced by regenerative tyre. PZT (lead zirconate titanate) type PET is chosen for greater stability and higher operating temperature. PET is placed in the order of 8 columns in which 4 columns is placed over another 4 columns and 40 rows in the circumference of the inner tyre at about 320 PET in each tyre.
Technical Paper

Vibrational Analysis of Partially Perforated Rectangular Plates with Circular Perforations

2021-10-01
2021-28-0199
Starting from aerospace to agriculture, partially perforated plates are being used in almost all major spheres of technology. Though a substantial amount of work has been done in this area, the effect of the diameter of circular perforations on the vibrational characteristics of rectangular sheets made of SS 416L has not been reported. The present work aims to bridge this gap through the modal analysis of the said system using respective computational software. In addition to the diameter of circular perforations, the effect of the thickness of the partially perforated rectangular sheets on the free vibrations of the system is also investigated. Through circular and parallel orientations of perforations, this work aims at establishing an understanding of the changes in vibrations depending on the pattern of perforations.
Technical Paper

Styling Parameter Optimization of the Type C Recreational Vehicle Air Drag

2021-09-30
2021-01-5094
Recreational vehicles have a lot of potential consumers in China, especially the type C recreational vehicle is popular among consumers due to its advantages, prompting an increase in the production and sales volumes. The type C vehicle usually has a higher air drag than the common commercial vehicles due to its unique appearance. It can be reduced by optimizing the structural parameters, thus the energy consumed by the vehicle can be decreased. The external flow field of a recreational vehicle is analyzed by establishing its computational fluid dynamic (CFD) model. The characteristic of the RV’s external flow field is identified based on the simulation result. The approximation models of the vehicle roof parameters and air drag and vehicle volume are established by the response surface method (RSM). The vehicle roof parameters are optimized by multi-objective particle swarm optimization (MO-PSO).
Technical Paper

Off-Highway Machine Fuel Performance Prediction Through Engine Data Analytics

2021-09-22
2021-26-0319
The field performance of a machine is conventionally analyzed using tools of virtual validation such as physics-based simulation models. Machine performance test data is typically not incorporated for performance evaluation using these tools. The present work aims to demonstrate the use of Data Analytics (DA) as a tool to analyze this data for predictive purposes. It aims at establishing numerical relationships of engineering interest within the data, which would otherwise be complex if done only using physics-based models. Engine operation data spanning over three months, comprising of multiple channels, of an off-highway machine, is used for model development. Machine fuel burn rate is chosen as the dependent variable. Several independent variables such as engine speed, charge air pressure, NOx production level, are chosen based on their correlation with the dependent variable and upon engineering interest.
Technical Paper

“EVO: New Metallic Substrate Development for Commercial Vehicle and Non-Road Applications”

2021-09-22
2021-26-0211
Affordable, efficient and durable catalytic converters for the Commercial Vehicle and Non-Road industry in all countries are required to reduce vehicle emissions under real world driving conditions and fulfill future legal requirements. Specially for India traffic conditions and payload to engine size conditions new cost-effective solutions are needed to participate in a cleaner and healthier environment. Metallic substrates with structured foils like the Transversal StructureTM (TS) or the Longitudinal StructureTM (LS) have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Now Vitesco Technologies is developed a new Substrate for Heavy duty applications that specifically maintains the geometric surface area at a very high level and improves further the mass transport of the pollutants, which potentially leads together to very high pollutant conversion rates.
Technical Paper

A Comparative Study between Abrasion Techniques to Improve the Adhesion of Rubber and Metal Bond for Commercial Vehicle Applications

2021-09-22
2021-26-0253
Engine mounts are an integral part of the vehicle that helps in reducing the vibrations generated from the engine. Engine mounts require a simple yet complicated amalgamation of two very different materials, steel and rubber. Proper adhesion between the two is required to prevent any part failure. Therefore, it becomes important that a comprehensive study is done to understand the mating phenomenon of both. A good linking between rubber and metal substrate is governed by surface pretreatment. Various methodologies such as mechanical and chemical are adopted for the same. This paper aims to present a comparative study as to which surface pretreatment has an edge over other techniques in terms of separation force required to break the bonding between the two parts. The study also presents a cost comparison between the techniques so that the best possible technique can be put to use in the commercial vehicle industry.
Technical Paper

Design and Development of Lightweight Pivot Arm Using Austempered Ductile Iron (ADI) for Heavy Commercial Vehicles

2021-09-22
2021-26-0255
In a current competitive automotive market, weight and cost optimization is the need of an hour. Therefore it is important to explore use of alternative material which has less weight, low manufacturing cost and better strength. This paper presents methodology to achieve cost & weight reduction through use of Austempered Ductile Iron (ADI) instead of alloy forging. ADI casting has lower density, physical properties at par with alloy forgings and lower manufacturing cost. Pivot arm is the one of the critical component of twin axle steering system which transfers the hydraulic torque from steering gearbox to second forward axle via linkage system. In order to design lightweight pivot arm, existing chromium alloy steel material is replaced with the Austempered ductile iron (ADI). Pivot arm is designed and validated digitally as well as bench test and results are found to be meeting cost and weight targets.
Technical Paper

Continuous Fiber Reinforced Composite Container for N1 Category of Vehicles

2021-09-22
2021-26-0251
The small commercial vehicle business is driven by demand in logistic, last mile transportation and white goods market. And to cater these businesses operational and safety needs, they require closed container on vehicle. As of now, very few OEM’s provide regulatory certified container vehicle because of constrains to meet inertia class of the vehicle. This paper focuses on design of a durable and extremely reliable container, made of the low-cost economy class glass fibre & core material. The present work provides the means to design the composite container for the N1 category of the vehicle. The weight of after-market metal container ranges between 300-350 Kg for this category of vehicle, which affects the overall fuel economy and emission of the vehicle. A detailed CAE analysis is done to design composite container suitable to meet inertia class targets and to achieve weight reduction of 30-40% as compared to metal container.
Technical Paper

Development of Thermal Detection Device for Automotive Vehicles to Monitor Human Body Heat

2021-09-22
2021-26-0232
According to research studies, epidemics such as SARS, COVID-19 spread have caused huge negative impacts on population, health and the economy around the globe. The outbreak places a huge burden on international health systems that were already straining to address AIDS, tuberculosis, malaria, and a host of other conditions. Research has proven that incase infected person is not traced timely then the spread of infection in society will take the shape of large-scale community transmission. Most of the infections spread because they got unnoticed by the infected person. One part of the access checker scans is a person’s body temperature by measuring infrared radiation emitted by their skin. Fever screening by infrared thermal imaging has become more widespread following the SARS infection, and particularly during the pandemic H1N1 and COVID-19 outbreak. Skin temperature is measured without contact by monitoring the emitted infrared radiation.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

A Detail Study of Axle Shaft Stress State Change due to Vertical Bending Load in a Commercial Vehicle Axle

2021-09-22
2021-26-0328
Heavy commercial vehicle axle shafts are designed for torsion load. Typically, axle shaft fracture mode during the test is torsional in nature through either shaft body diameter or spline end. However, some of the field return axles shows fracture mode on axle shaft flange. This fracture mode does not resemble with a typical lab test torsional fracture. Metallurgical investigation report indicated that the fracture mode is bending in nature. This paper thus focuses on detail study of change in boundary condition and load transfer path under abusive vertical bending load on axle. A detail finite element analysis is performed to understand stress state change in axle shaft under this condition. A fracture hypothesis is proposed based on observations of finite element analysis results. A detail case study is presented depicting correlation of proposed hypothesis with physical fracture mode.
Technical Paper

Air Quality Improvement in Air Conditioner Bus Saloon Through Carbon Activated Filters for Heavy Duty Commercial Vehicles

2021-09-22
2021-26-0312
The air purifier industry has seen a growth in terms of demand and sales lately. All credit goes to massive Industrialization in developing countries such as India. The most harmful of the pollutants are PM 2.5 articulates and NOx Emissions. This leads to the new trend of customers become health and comfort conscious and willing to pay more for better and improved transportation. To satisfy these demands, COEM’s are developing more numbers of Air conditioning buses. Although the OEM’s are meeting this demand of quantity, the quality of air from air conditioner is still suffer. One of the main reasons for this poor air quality is because of the ineffectiveness of conventional air conditioner air filters to control particulate materials i.e. PM2.5, biological pollutants i.e. microbes, bacteria, viruses, and gaseous pollutants i.e. CO, CO2, SO2, NOX, O3 & VOCs in air. As per various researches, health problems associated with bus occupant compartment air quality appear more frequently.
X