Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Research on Braking Energy Recovery Strategy of Pure Electric Vehicle

2021-10-11
2021-01-1264
With the increasingly serious global environmental and energy problems, as well as the increasing number of vehicles, pure electric vehicles with its advantages of environmental protection, low noise and renewable energy, become an effective way to alleviate environmental pollution and energy crisis. Due to the current pure electric vehicle power battery technology is not perfect, the range of pure electric vehicle has a great limit. Through the braking energy recovery, the energy can be reused, the energy utilization rate can be improved, and the battery life of pure electric vehicles can be improved. In this paper, a pure electric vehicle is taken as the analysis object, and the whole vehicle analysis model is built. Through the comparative analysis, based on the driver's braking intention and vehicle running state, the braking energy recovery control strategy of double fuzzy control is proposed.
Technical Paper

Potential and Challenges for Application-Specific Friction Characteristics of Race Brake Pads

2021-10-11
2021-01-1282
As a race driver hits the pedal to trigger the braking event, a dynamic load transfer takes place in the car. This is a similar kind of weight transfer experienced on the road while stopping any vehicle abruptly. Modern race cars such as FIA-regulated Grand Touring Car classes GT3 and LMGTE produce a significant aerodynamic downforce at a reasonably high efficiency level. In this type of high downforce race cars, load variations originated by aerodynamics are added onto the mass transfer. The combination of these effects provide a braking effect with this type of cars a highly transient character. At the same time, our customers are facing the challenge of strict technical regulations, usually forbidding brake control systems. In motorsport competition, car performance is of primary priority to help our customers win championships.
Technical Paper

Transfer Film Composition and Characteristics in Copper-Free NAO Brake Pads

2021-10-11
2021-01-1278
Copper-free non-asbestos-organic (NAO) brake pads have been developed to satisfy the copper content regulations in North America. Copper-free NAO brake pads are required to have a stable friction coefficient owing to the electrification of the control systems, as well as to exhibit improved wear resistance to reduce brake dust emissions. Our previous study indicated that the transfer film formed on the rotor surface affects both the friction coefficient stability and amount of wear. In this study, we investigated how different types of inorganic fillers affect the transfer film formation and its composition in a wear test controlled by temperature. It was confirmed that the main component of the transfer film was iron oxide derived from the rotor. Furthermore, the contained components changed according to the appearance of the rotor surface after each wear test.
Technical Paper

Development of Compression Spring Variable Valve for Exhaust Mufflers

2021-09-22
2021-26-0289
The primary function of exhaust muffler is to reduce noise from the internal combustion engine without affecting its performance due to the impact of higher back pressure. The exhaust system back pressure is directly related to the engine fuel efficiency. The consumption of back pressure by the emission control system in BS IV regulation is about 30% from the total permissible engine limit, whereas in BS VI consumption is about 70%. The combination technologies used in BSVI and forthcoming RDE regulations such as TWC, GPF, DOC, DPF and SCR increases significant back pressure in exhaust system, hence the engine performance decreases. This demand robust method to control the exhaust back pressure for better fuel efficiency. Emission, noise and back pressure are the non-complimentary parameters in exhaust system development. The variable valve technology introduction in muffler is one method to optimize the above parameters.
Technical Paper

Simulation based Verification & Validation of AEBS

2021-09-22
2021-26-0128
ADAS and AV technologies are going to disrupt the entire transportation industry, as we know it, with a profound impact on human life. They promise to enhance human lives by providing a safer and much more accessible transportation ecosystem to all of society. However, to deliver on all of its promises, they need to be at least as good as a ‘good’ human driver. Therefore, they need to be very safe and robust, with the ability to perform in a variety of driving scenarios, and be very secure, being immune from any external cyberattacks. Hence, such technologies need to be tested very extensively. However, from various studies, it has been found that, to declare a full AV as good as a human driver, the AV will be required to drive more than a billion miles on real roads, taking tens and sometimes hundreds of years to drive those miles, considering even the most aggressive testing assumptions.
Technical Paper

Model Order Reduction Technique to Aid Control System Design

2021-09-22
2021-26-0347
Design of real time active controls for structural dynamics problems requires a very precise mathematical model, to closely determine the system dynamic behavior, under virtual simulation. The finite element models can somehow be used as a mathematical model but due to complex shape/structure of the component, the size of discrete models resulting from finite element analysis is usually very large, causing the virtual simulation to be extremely computationally intensive and time consuming, also the boundary conditions applied are not very scalable, making the system deviate from its real dynamic behavior. Thus, this paper deals with the design of a Model Order Reduction technique, using orthogonal decomposition of system matrices, which can be used for creating accurate low-order dynamic model with scalable boundary conditions.
Technical Paper

Evaluation of Protected Boot Mechanism in Automotive Domain

2021-09-22
2021-26-0506
In the recent years the electronics and software in the car has been increased with the request of new features. Todays vehicles are vulnerable to cyber-attacks due to their connectivity with internet and infrastructure. Due to this security in the automotive domain has gained importance. Earlier the software updates were done at the service station and probability of tampering the software was less. As the vehicles are connected through internet, the car manufacturers are shifting towards over the air updates (OTA). It should be ensured that only authentic software is executed on the micro controller. Protected boot is a security control used to ensure authentic software is executed on the microcontroller. Protected boot is a mechanism in which authenticity and integrity of the software is checked during the booting phase by using the chain of Trust mechanism. Protected boot can be achieved by using authenticated boot or secure boot mechanism.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

Application of Machine Learning Technique for Development of Indirect Tire Pressure Monitoring System

2021-09-22
2021-26-0016
Tire inflation pressure has a significant impact over vehicle driving dynamics, fuel consumption as well as tire life. Therefore, continuous monitoring of tire pressure becomes imperative for ride comfort, safety and optimum vehicle handling performance. Two types of tire pressure monitoring systems (TPMS) used by vehicles are - direct and indirect TPMS. Direct systems deploy pressure sensors at each wheel and directly send pressure value to the vehicle Controller Area Network (CAN). Indirect sensors on the other hand use the information from already existing sensors and some physics-based equations to predict the value of tire pressure. Direct TPMS tend to be more accurate but have higher cost of installation while indirect TPMS comes with a minimum cost but compromised accuracy. A digital proof-of-concept study for indirect TPMS development of a non-ESP vehicle based on machine learning (ML) technique is elaborated in this paper.
Technical Paper

A Method of Estimation for the Phase to Phase RMS Voltage in a Three-Phase Inverter-Controlled PMSM Machine using SVPWM Based FOC Algorithm

2021-09-22
2021-26-0402
Phase to phase voltage estimation is necessary to dynamically control a motor or have diagnostics for the inverter-motor system. In this paper, various methods to sense phase voltage is studied. A method for phase-to-phase RMS voltage estimation in a 3-phase inverter-controlled system using SVPWM based FOC algorithm has been proposed. The method presented in this paper involves a module where each pole voltage is sensed, passed through an LPF filter in a circuit, and given to a microcontroller. The same signal is then processed through a digital filter and given to a mathematical model for RMS voltage estimation. This model estimates the phase-to-phase RMS voltage at all the motor speeds and power points. The non-linearities observed in the practical system have been considered and the overall method has been simulated using MATLAB Simulink. Accuracies and deviations have been estimated considering tolerances in hardware.
Technical Paper

A Proposed Systematic Software Robustness Verification Framework (SRVF) for Enhancing Critical Software Module Robustness

2021-09-22
2021-26-0481
With the advancement of inbuilt electronics and intelligent controls, automotive and other industries are looking at efficient usage of ECUs with intelligent electronic modules and more of critical functions implemented by software. Robustness of the software involved is always critical to the ECUs health, so software engineers are tasked to ensure the same by following right development and validation life cycle. Enabling the multiple decision by single software module makes verification & validation challenging, complex and time consuming. Current method of software validation involves unit testing at module level. This may overlook some failures which occur on system level and can identify new set of requirements if not already captured during requirement gathering phase. It becomes an iterative approach of design, test and identify new requirements. Software FMEA in embedded control system [2] is used for identifying new requirements and mitigating the failures.
Technical Paper

Development of Closed Loop Power Recirculating Type Test Rig - Higher Torque Ranges

2021-09-22
2021-26-0491
In the past decades, many impressive progress has been made in the rig development for the gear validation. But, the challenges are to test the entire gear box for the improvement in the single gear alone to ascertain material quality or process improvement, that too with the higher torque range gear boxes, which requires huge investment and power consumption due to high capacity test rig / dynamometer. This paper deals with an experimental validation of the dynamic model for a gear pair test system, representative of a closed loop power recirculating type test rig. Being a closed loop, this system has its own uniqueness, that, it uses the low capacity prime mover, which considers the initial starting loop torque only, to cater the high power requirement in an efficient manner. The key intend of the development of this rig is to reduce the testing from system level to sub component level with low cost operation and more competence for the gears of high torque application.
Technical Paper

Ultra Low Emission Norms Project Development by Virtualization - An Efficient Combination of Virtual and Conventional Test Benches

2021-09-22
2021-26-0495
The ever-increasing cost of automotive powertrain development is due to the more complex technologies required to meet the latest emissions legislation and customer expectations. Manufacturers need to conduct extensive development loops of test bench and on-road testing to verify the hardware, emission control system, corresponding ECU software function development. Increased resources are required to build up a comparably large number of prototype vehicles to calibrate all the ECU algorithms and functionalities. Increasing powertrain complexity leads typically to a strong increase of conventional calibration efforts. Therefore, there is a strongly increasing need for an advanced calibration approach based on multi-facial XiL simulation.
Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
Technical Paper

Development of a Piston Fuel Flow Meter Based on a Microcontroller and Its Use for Vehicle Diagnostics

2021-09-21
2021-01-1150
During operation, it is advisable to periodically monitor the actual fuel consumption of the vehicle. Fuel consumption can be used to assess the driving conditions and technical condition of the vehicle, which affects the intensity of environmental pollution. The engine control system calculates fuel delivery based on driving conditions and vehicle load based on information from sensors. When diagnosing on fuel economy, it is convenient to directly measure the consumption in the fuel line of the delivery system. The advantages and disadvantages of the main types of different flow sensors were analyzed. It is proposed to measure the amount of fuel per unit of time with a piston volumetric flow meter. The design of a software and hardware system for measuring fuel consumption has been developed, which consists of control systems for the actuators of the flow meter and a system for recording and processing information in a microcontroller.
Technical Paper

Identifying Critical Use Cases for a Plug-in Hybrid Electric Vehicle Battery Pack from Thermal and Ageing Perspectives

2021-09-21
2021-01-1251
The current trend towards an increasing electrification of road vehicles brings to life a whole series of unprecedent design issues. Among these, the ageing process that affects the lifetime of lithium-ion based energy storage systems is of particular importance since it turns out to be extremely sensitive to the variation of battery operating conditions normally occurring especially in hybrid electric vehicles (HEVs). This paper aims at analyzing the impact of operating conditions on the predicted lifetime of a parallel-through-the-road plug-in HEV battery both from thermal and ageing perspectives. The retained HEV powertrain architecture is presented first and modeled, and the related energy management system is implemented. Dedicated numerical models are also discussed for the high-voltage battery pack that allow predicting its thermal behavior and cyclic ageing.
Technical Paper

Smart Control Logic for EV Battery Cooling System

2021-09-15
2021-28-0117
Transport sector comes under largest energy consuming category, after mining and other industries, a significant fuel economy improvement are required to reduce green house emission. Till now the most promising technologies in this attempt are electric vehicle. Electric vehicles use large batteries to store energy, most common battery used in electric vehicles are lithium ion and lithium polymer preferred due to their high energy density compared to weight. The flow of current causes heating in the battery cells, performance of Lithium-Ion battery cells is greatly impacted by their temperature. For optimum performance it should operate in desired temperature range (15°C-35°C). Battery cooling system is the system which maintain optimum temperature of battery by cooling/heating to increases the thermal efficiency of vehicle. Most common Battery Thermal Management methods used today are, Air Cooled, Indirect liquid Cooled and Direct Cooled.
Technical Paper

Development of a Fully Physical Vehicle Model for Off-Line Powertrain Optimization: A Virtual Approach to Engine Calibration

2021-09-05
2021-24-0004
Nowadays control system development in the automotive industry is evolving rapidly due to several factors. On the one hand legislation tightening is asking for simultaneous emission reduction and efficiency increase, on the other hand the complexity of the powertrain is increasing due to the spreading of electrification. Those factors are pushing for strong design parallelization and frontloading, thus requiring engine calibration to be moved much earlier in the V-Cycle. In this context, this paper shows how, coupling well known physical 1D engine models featuring predictive combustion and emission models with a fully physical aftertreatment system model and longitudinal vehicle model, a powerful virtual test rig can be built. This virtual test rig can be used for powertrain virtual calibration activities with reduced requirement in terms of experimental data.
Technical Paper

Machine Learning Application to Predict Turbocharger Performance under Steady-State and Transient Conditions

2021-09-05
2021-24-0029
Performance predictions of advanced turbocharged engines are becoming difficult because conventional engine models are built using performance map data of turbochargers with a proportional integral derivative (PID) controller. Improving prediction capabilities under transient test cycles or real driving conditions is a challenging task. This study applies a machine learning technique to predict turbocharger performances with high accuracy under steady-state and transient conditions. The manipulated signals of engine speed and torque created based on Compressed High-Intensity Radiated Pulse (Chirp signal) and Amplitude-modulated Pseudo-Random Binary Signal (APRBS) are used as inputs to the engine testbed. Data from the engine experiments are used as training data for the AI-based turbocharger model. High prediction accuracy of the AI turbocharger model is achieved with the co-efficient of determination in the model, and cross-validation results are higher than 0.8.
Technical Paper

An Optimization-Based Framework for Dynamic Model Development for a Three-Way Catalytic Converter Suitable for Urban Driving Condition

2021-09-05
2021-24-0078
The three-way catalytic converter (TWC) is a vital component of the S.I. (Spark Ignition) engine to meet the current emission norms. TWC can perform the three conversion processes simultaneously. Hence, health diagnosis and performance monitoring of TWC is a major requirement of the power-train control system. In TWC modeling, the chemical species CO, THC, NOx, O2, and CO2 are the major components of the redox reaction over the wash-coat surface which impacts the overall conversion efficiency of the gases. This research work examines a generalized chemical model for a fresh catalytic converter validated for significant engine operating points in an urban drive cycle. The gas concentration measurements across the catalyst are harvested from an engine dynamo-meter test-bed. This work attempts to find the best method to optimize the chemical kinetic parameter of the Arrhenius equation parameters.
X