Refine Your Search

Topic

Author

Search Results

Standard

S400 Copper Media Interface Characteristics Over Extended Distances

2019-07-09
CURRENT
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394-2008 Beta (formerly IEEE-1394b) as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should refer to the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL HDBK-454A and MIL-HDBK-5400 for guidance.
Standard

Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground-Digital Annex

2019-07-09
WIP
ARP5149CDA
This Digital Annex (DA) contains the current, full-PDF version of ARP5149B, Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground, as well as .jpeg format files of Appendix D, Application Guidelines Configuration, Critical Component, and Spray Area Diagrams for Aircraft. The .jpeg diagram files may be used by purchasers in accordance with the terms of the included license agreement.
Standard

Aircraft Ground Deicing/Anti-Icing Training and Qualification Program

2019-06-30
WIP
AS6286B
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training.
Standard

Aircraft Ground Deicing/Anti-Icing Training and Qualification Program

2019-06-26
CURRENT
AS6286A
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training.
Standard

Basic Composite Repair Technician Certification Standard

2019-06-25
WIP
ARP6262A
It is recognized that the structural integrity of repaired composite structures depends upon the capabilities of the individuals who are responsible for performing the repairs. This document is intended to address repairs of composite structure regardless of the type of structure such as marine, wind turbine, automotive, aircraft, or other applications. This certification standard establishes the minimum requirements for training, examining, and certifying composite structure repair personnel. It establishes criteria for the certification of personnel requiring appropriate knowledge of the technical principles underlying the composite structural repairs they perform. Persons certified under this document may be eligible for licensing or certification/ qualification by an appropriate authority, in addition to this industry accepted basic composite repair technician certification.
Standard

Magnesium Alloys in Aircraft Seats - Developments in Magnesium Alloy Flammability Testing

2019-06-19
WIP
AIR6160A
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
Standard

Rotor Blade Electrothermal Ice Protection Design Considerations

2019-06-14
WIP
AIR1667B
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that should be considered during design, development, certification, or testing of helicopter rotor blade ice protection systems. Although various concepts of ice protection are mentioned in this report, the text is limited generally to those factors associated with design and substantiation of cyclic electrothermal ice protection systems as applicable to the protection of helicopter rotor blades. Other systems are described briefly in Appendix A. Applications consider main rotor blades, conventional tail rotor blades, and other types of antitorque devices. The information contained in this report is also limited to the identification of factors that should be considered and why the factor is important. Specific design, analysis and test methodologies are not included. For additional information refer to the references listed in 2.1.
Standard

JAUS Autonomous Capabilities Service Set

2019-06-10
CURRENT
AS8024
This document defines a set of standard application layer interfaces called JAUS Autonomous Capabilities Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Autonomous Behaviors Services represent the platform-independent capabilities commonly found in platforms across domains, including air, maritime, and ground. At present five (5) services are defined in this document. These services are: - Comms Lost Policy Manager: Detect and recover from loss of communications with a control station - Retrotraverse: Return along a path previously traveled - Self-Righting: Attempt to recover from a tip over condition - Cost Map 2D: Provides information about the current operating environment of the platform - Path Reporter: Provides information about the previous or future planned path of the platform
Standard

Animal Environment in Cargo Compartments

2019-06-05
WIP
AIR1600B
The environmental factors of prime importance in the transport of animals in aircraft are air temperature, humidity and carbon dioxide concentration, and of course space (or volume) limitations. Secondary factors are air velocity, noise, lighting, etc. Pressure isnot addressed herein as pressure levels and rates of change are totally dictated by human occupancy requirements. Some basic governmental documents, such as References 1, 2 and 3, define overall requirements for animal transportation, but with very limited data on environmental requirements. Reference 4 gives some airplane characteristics measured during animal transportation from the USA to foreign destinations. Temperature and humidity profiles are indicative of airplane characteristics. This report presents information on the temperature, humidity, ventilation, and carbon dioxide limitations and the metabolic heat release rates for animals which will allow the determination of the environment required by th animals.
Standard

Aviation Visual Distress Signals (AVDS)

2019-05-31
WIP
AS5134C

This SAE Aerospace Standard (AS) provides minimum performance and design standards for a handheld, high-intensity, flashing Aviation Visual Distress Signal (AVDS) based on light-emitting-diode (LED) technology operating simultaneously in visible (white) and near infrared (NIR) spectra designed to facilitate location and rescue of aviation accident/ditching survivors in open sea conditions.

Standard

Aircraft Ground Deicing/Anti-Icing Processes

2019-05-31
WIP
AS6285C
This document establishes the minimum requirements for ground based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. NOTE: Refer to particular aircraft operator or aircraft manufacturer's published manuals and procedures. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents.
Standard

Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft

2019-05-16
WIP
ARP6461A
This document is applicable to civil aerospace airframe structural applications where stakeholders are seeking guidance on the definition, development and certification of Structural Health Monitoring (SHM) technologies for aircraft health management applications. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future.
Standard

Aircraft Ground Deicing/Anti-Icing Processes

2019-05-09
CURRENT
AS6285B
This document establishes the minimum requirements for ground based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. NOTE: Refer to particular aircraft operator or aircraft manufacturer's published manuals and procedures. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents.
Standard

Reliability Assurance of Photonic Integrated Circuit (PIC) Based Devices Used in Aerospace Applications

2019-05-08
WIP
ARP7354
This document is intended to provide reliability assurance recommended practices for the deployment of individual photonic devices and PIC-based devices into aerospace platforms, focusing on reliability requirements to reach Technology Readiness Level (TRL) 7, 8 and 9. It will cover reliability assurance tests for single element and PIC chips, packaged single element and PIC chips and some single element and PIC based higher functionality modules, such as fiber-optic transmitters and receivers, free space optical transmitters and receivers, illuminators and sources for optical sensors. The document will provide the reasons and methods for aerospace reliability assurance of PIC chips, PIC based packages and PIC based devices. It will be as inclusive as possible, including PIC chips fabricated in the main material systems: semiconductors (Group IV, III-V, II-VI), electro-optic crystals (lithium niobate) and polymers.
Standard

Environmental Degradation of Textiles

2019-04-24
CURRENT
AIR1490C
Since cargo restraint devices made with textiles should have a predictable service life, there should be data available so that predictions can be made. This document compiles available information on textiles of the types used in air cargo restraint devices and reviews the degradation characteristics of each. Textiles are used primarily in cargo restraint nets on air cargo pallets and nonstructural containers, restraint nets installed in cargo aircraft, and similar applications.
Standard

Importance of Physical and Chemical Properties of Aircraft Hydraulic Fluids

2019-04-22
WIP
AIR81E
This document discusses the relative merits of the physical and chemical properties of hydraulic fluids in relation to the aerospace hydraulic system design, and the related materials compatibility. The discussion in this report applies both to hydrocarbon and phosphate ester based aircraft hydraulic fluids. In some cases, numerical limits are suggested, but, in general, the significance and effect of a property is noted qualitatively.
X