Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Snow Particle Characterization. Part A: Statistics of Microphysical Properties of Snow Crystal Populations from Recent Observations Performed during the ICE GENESIS Project

2023-06-15
2023-01-1492
Measurements in snow conditions performed in the past were rarely initiated and best suited for pure and extremely detailed quantification of microphysical properties of a series of microphysical parameters, needed for accretion modelling. Within the European ICE GENESIS project, a considerable effort of natural snow measurements has been made during winter 2020/21. Instrumental means, both in-situ and remote sensing were deployed on the ATR-42 aircraft, as well as on the ground (ground station at ‘Les Eplatures’ airport in the Swiss Jura Mountains with ATR-42 overflights). Snow clouds and precipitation in the atmospheric column were sampled with the aircraft, whereas ground based and airborne radar systems allowed extending the observations of snow properties beyond the flight level chosen for the in situ measurements.
Book

Care and Repair of Advanced Composites, 3rd Edition

2020-12-31
The new edition of the well known Care and Repair of Advanced Composites, 3rd Edition, improves on the usefulness of this practical guide geared towards the aerospace industry. Keith B. Armstrong, the original lead author of the first edition was still in charge of this project, counting on the expert support of Eric Chesmar, senior composites specialist at United Airlines. Mr. Chesmar is also an active member of SAE International's CACRC (Commercial Aircraft Composite Repair Committee), an elite group of industry experts dedicated to the standardization, safety, security, and efficiency of composite repairs in the airline industry. Mr. Francois Museux (Airbus) and Mr. William F. Cole II also contributed. Care and Repair of Advanced Composites, 3rd Edition, presents a fully updated approach to the training syllabus recommended for repair design engineers and composite repair mechanics.
Technical Paper

Ranking of Thick Ice Shapes Based on Numerical Simulation for Certification

2019-06-10
2019-01-1944
The objective of this paper is to present a numerical method to rank thick ice shapes for aircraft by comparing the ice accretion effects for different icing scenarios in order to determine the more critical ice shape. This ranking allows limiting the demonstration of the aerodynamic characteristics of the aircraft in iced condition during certification to a reduced number of ice shapes. The usage of this numerical method gives more flexibility to the determination of the critical ice shapes, as it is not dependent of the availability of physical test vehicles and/or facilities. The simulation strategy is built on the Lattice Boltzmann Method (LBM) and is validated based on a representative test case, both in terms of aircraft geometry and ice shapes. Validation against existing experimental results shows the method exhibits an adequate level of reliability for the ranking of thick ice shapes.
Technical Paper

Improvements of the PLANET System for Real-Time Satellite Data Transmission During the HAIC-HIWC Darwin Field Campaign

2015-06-15
2015-01-2147
The PLANET System was used for real-time satellite data transmission during the HAIC-HIWC Darwin field campaign (January to March 2014). The basic system was initially providing aircraft tracking, chat, weather text messages (METAR, TAF, etc.), and aeronautical information (NOTAMs) in a standalone application. In the framework of the HAIC project, many improvements were made in order to fulfill requirements of the onboard and ground science teams for the field campaign. The aim of this paper is to present the main improvements of the system that were implemented for the Darwin field campaign. New features of the system are related to the hardware component, the communication protocol, weather and tracking display, geomarkers on the map, and image processing and compression before onboard transfer.
Technical Paper

A350XWB Icing Certification Overview

2015-06-15
2015-01-2111
The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests were performed in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS 25.1419 and CS25.21g.
Technical Paper

The Use of RDT Nowcasting Tool for Detecting Convective Areas Associated with High Ice Water Content during HAIC/HIWC Field Campaign

2015-06-15
2015-01-2124
Glaciated icing conditions potentially leading to in-service event are often encountered in the vicinity of deep convective clouds. Nowcasting of these conditions with space-borne observations would be of a great help for improving flight safety and air-traffic management but still remains challenging. In the framework of the HAIC (High Altitude Ice Crystals) project, methods to detect and track regions of high ice water content from space-based geostationary and low orbit mission are investigated. A first HAIC/HIWC field campaign has been carried out in Australia in January-March 2014 to sample meteorological conditions potentially leading to glaciated icing conditions. During the campaign, several nowcasting tools were successfully operated such as the Rapid Development Thunderstorm (RDT) product that detects the convective areas from infrared geostationary imagery.
Technical Paper

HAIC/HIWC Field Campaign - Specific Findings on PSD Microphysics in High IWC Regions from In Situ Measurements: Median Mass Diameters, Particle Size Distribution Characteristics and Ice Crystal Shapes

2015-06-15
2015-01-2087
Despite past research programs focusing on tropical convection, the explicit studies of high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) are rare, although high IWC conditions are potentially encountered by commercial aircraft during multiple in-service engine powerloss and airdata probe events. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The airborne instrumentation included a new reference bulk water content measurement probe and optical array probes (OAP) recording 2D images of encountered ice crystals. The study herein focuses on ice crystal size properties in high IWC regions, analyzing in detail the 2D image data from the particle measuring probes.
Technical Paper

Application of EASA Part 21 Requirement Regarding Change to Aircraft Type Design by Airbus

2013-09-17
2013-01-2124
Airbus business and Extended Enterprise require more and more involvement of design and built suppliers, tier 1 but also across the complete supply chain i.e. tier 2-n. These suppliers are not working only for Aerospace industry and may have different cultures. The pressure on cost and overall efficiency is high and everybody has to cope with obsolescence and new regulation (e.g. REACH (Registration, Evaluation and Authorization and Restriction of Chemicals)). So it became very important for Airbus to clarify the criteria under which a change can be done without Airbus review, and criteria under which a change can be done without Airworthiness authority review.
Journal Article

Application of Model Based Functional Specification Methods to Environmental Control Systems Engineering

2011-10-18
2011-01-2504
The paper presents an innovative approach for the functional specification of complex and highly integrated aircraft control systems, such as the Environmental Control System (ECS), by applying model based specification methods. Complexity and effectiveness of modern ECS have significantly increased during the last few years along with development of new technologies and innovations in control engineering as well as digital data distribution and processing. Efficient management of cabin air flows on the one hand makes the ECS more energy-saving and on the other hand more complex with regard to its functionality and interaction with other interfaced aircraft systems. Numerous data interfaces to other systems and a high degree of automation are typical for a modern ECS. The aircraft manufacturer specifies the entire ECS functions and its interactions within the aircraft.
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Journal Article

Application of Genetic Algorithm for Preliminary Trajectory Optimization

2011-10-18
2011-01-2594
The aviation sector has played a significant role in shaping the world into what it is today. The rapid growth of global economies and the corresponding sharp rise in the number of people now wanting to travel on business and for pleasure, has largely been responsible for the development of this industry. With a predicted rise in Revenue Passenger Kilometers (RPK) by over 150% in the next 20 years, the industry will correspondingly be a significant contributor to environmental emissions. Under such circumstances optimizing aircraft trajectories for lowered emissions will play a critical role amongst various other measures, in mitigating the probable environmental effects of increased air traffic. Aircraft trajectory optimization using evolutionary algorithms is a novel field and preliminary studies have indicated that a reduction in emissions is possible when set as objectives.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Journal Article

Optimal Control to Recover a Safe Situation from Low/High-Energy Situation in Approach

2011-10-18
2011-01-2618
The main study illustrated in this paper deals with the computation of commands which allow an aircraft to recover a nominal energy trajectory from a low/high energy state during the approach phase. The commands taken into account in this paper are the slat/flap aerodynamic control surfaces which allow the aircraft to maintain the best lift performance for low velocities during the approach phase. In this study, it is supposed that the aircraft maintains a known vertical trajectory, simplified by a constant ground slope, while no engines and airbrakes are used. A non-linear optimization approach is studied in this paper and two methods are tested: a) Hermite-Simpson, trapezoidal collocation methods, b) Sequential numerical integration method. These different methods are tested and simulation results are given for comparison, with different initial velocities permitting to change the initial energy state.
Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

2011-10-18
2011-01-2709
The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Journal Article

Optimization of an Unconventional Environmental Control System Architecture

2011-10-18
2011-01-2691
The Environmental Control System is a relevant element of any conventional or More Electric Aircraft (MEA). It is either the key consumer of pneumatic power or draws a substantial load from the electric power system. The objective of this paper is to present a tool for the design of Environmental Control Systems and to apply it to an unconventional system. The approach is based on a recently proposed methodology, which is improved with respect to flexibility and ease-of-use. Furthermore, modeling and simulation of vapor compression cycles is discussed, which are candidate technological solutions for More Electric Aircraft concepts. A steady-state moving boundary method is presented to model heat exchangers for such applications. Finally, the resulting design environment is applied to optimization of an unconventional ECS architecture and exemplary results are presented.
Journal Article

A Model-based Solution to Robust and Early Detection of Control Surface Runaways

2011-10-18
2011-01-2803
This paper discusses the design of a model-based fault detection scheme for robust and early detection of runaways in aircraft control surfaces servo-loop. The proposed scheme can be embedded within the structure of in-service monitoring systems as a part of the Flight Control Computer (FCC) software. The final goal is to contribute to improve the performance detection of unanticipated runaway faulty profiles having very different dynamic behaviors, while retaining a perfect robustness. The paper discusses also the tradeoffs between adequacy of the technique and its implementation level, industrial validation process with Engineering support tools, as well as the tuning aspects. The proposed methodology is based on a combined data-driven and system-based approach using a dedicated Kalman filtering. The technique provides an effective method ensuring robustness and good performance (well-defined real-time characteristics and well-defined error rates).
Journal Article

Methodology for Solving Contact Problem during Riveting Process

2011-10-18
2011-01-2582
The paper describes the methodology of contact problem solving that is used in specialized software code aimed at simulation of aircraft assembly process. For considered class of problems it is possible to radically reduce the number of unknowns without loss of accuracy. The results of validation of developed code against physical experiments and commercial FEM codes are also given.
Journal Article

OBIGGS for Fuel System Water Management - Proof of Concept

2011-10-18
2011-01-2793
Fuel on-board dehydration during flight technologies has been modeled and experimentally studied on a laboratory testing setup in normal specific gas flow rates range of 0.0002-0.0010 sec-₁. Natural air evolution, ullage blowing and fuel sparging with dry inert gas have been studied. It has been shown that natural air evolution during aircraft climb provides a significant, substantial, but insufficient dehydration of fuel up to 20% relative. Ullage blowing during cruise leads to a constant, but a slow dehydration of fuel with sufficient column height concentration gradient. Dry inert gas sparging held after the end of the natural air evolution or simultaneously with natural air evolution provides rapid fuel dehydration to the maximum possible values. It potentially may eliminate water release and deposition in fuel to -50°C. It has been found that for proper dehydration, necessary and sufficient volume of dry inert gas to volume of fuel ratio is about 1.
Technical Paper

Airbus - EMAs for Flight Controls Actuation System - An Important Step Achieved in 2011

2011-10-18
2011-01-2732
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, “on board” maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Technical Paper

EMA Aileron COVADIS Development

2011-10-18
2011-01-2729
In the frame of the COVADIS project (flight control with distributed intelligence and systems integration) supported by the DPAC and where Airbus and Sagem are partners, an electromechanical actuator (EMA) developed and produced by Sagem (SAFRAN group) flew for the first time in January 2011 as an aileron primary flight control of the Airbus A320 flight test Aircraft. With this new type of actuator, in the scope of the preparation of the future Airbus Aircraft, the perspectives of using EMA technologies for the flight control systems is an important potential enabler in the more electrical aircraft. The paper deals with the development phase of this actuator from the definition phase up to the flight tests campaign. It is focused on : COVADIS project context (flight control with distributed intelligence and systems integration), The challenges of the definition phase, Test results presentation (ground and flight).
X