Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Enhanced Specific Heat Capacity of Molten Salt-Metal Oxide Nanofluid as Heat Transfer Fluid for Solar Thermal Applications

2010-11-02
2010-01-1734
In this study, a molten salt-based high temperature nanofluid is explored for solar thermal energy conversion applications. The efficacy of the nanofluid as a heat transfer fluid (HTF) in concentrating solar power systems is explored in this study. The molten salt can enable higher operating temperature resulting in enhancement of the overall system efficiency for power generation (using, for example, a Rankine cycle or Stirling cycle). However, the usage of the molten salt as the HTF is limited due to their low specific heat capacity values (compared with, for example, water or silicone oils). The low specific heat of molten salt can be enhanced by doping small amount of nanoparticles. Solvents doped with minute concentration of nanoparticles are termed as "Nanofluids." Nanofluids are considered as attractive coolants for thermal management applications due to their anomalously enhanced thermal properties (compared with the neat solvent).
Technical Paper

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-07-17
2006-01-2264
The addition of metal nanoparticles to standard coolant fluids dramatically increases the thermal conductivity of the liquid. The properties of the prepared nanofluids will allow for lighter, smaller, and higher efficiency spacecraft thermal control systems to be developed. Nanofluids with spherical or rod-shaped metal nanoparticles were investigated. At a volume concentration of 0.5%, the room temperature thermal conductivity of a 2 nm spherical gold nanoparticle-water solution was increased by more than 10% over water alone. Silver nanorods increased the thermal conductivity of ethylene glycol by 53% and water by 26%.
Technical Paper

In Operation Detection and Correction of Rotor Imbalance in Jet Engines Using Active Vibration Control

1994-04-01
941151
Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezolectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.
X