Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension

2015-09-15
2015-01-2609
Minimizing the stress concentrations around cutouts in a plate is often a design problem, especially in the Aerospace industry. A problem of optimizing spatially varying fiber paths in a symmetric, linear orthotropic composite laminate with a cutout, so as to achieve minimum stress concentration under remote unidirectional tensile loading is of interest in this study. A finite element (FE) model is developed to this extent, which constraints the fiber angles while optimizing the fiber paths, proving essential in manufacturing processes. The idea to be presented could be used to derive fiber paths that would drastically reduce the Stress Concentration Factor (SCF) in a symmetric laminate by using spatially varying fibers in place of unidirectional fibers. The model is proposed for a four layer symmetric laminate, and can be easily reproduced for any number of layers.
Technical Paper

The Development of HFE Space Claims for Combat Vehicles

2014-04-01
2014-01-0488
Discuss the basics of posturing and positioning of the full range of occupants necessary to cover the required anthropometric demographics in combat vehicles, both ground and air, since there are similarities to both and that they are both very different than the traditional automotive packaging scenarios. It is based on the Eye Reference Point and the Design Eye Point. Discuss the three Reach Zones: Primary, Secondary and Tertiary. Discuss Vision Zones and potentially ground intercepts. Discuss body clearances, both static and dynamic. Discuss the basic effects of packaging occupants with body armor with respect to SRP's and MSRP's.
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Reliability Prediction for the HMMWV Suspension System

2011-04-12
2011-01-0726
This research paper addresses the ground vehicle reliability prediction process based on a new integrated reliability prediction framework. The integrated stochastic framework combines the computational physics-based predictions with experimental testing information for assessing vehicle reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. To solve efficiently and accurately the challenges coming from large-size computational mechanics models and high-dimensional stochastic spaces, a HPC simulation-based approach to the reliability problem was implemented.
Technical Paper

Interior Aircraft Noise Computations due to TBL Excitation using the Energy Finite Element Analysis

2009-05-19
2009-01-2248
The Energy Finite Element Analysis (EFEA) has been developed for evaluating the vibro-acoustic behavior of complex systems. In the past EFEA results have been compared successfully to measured data for Naval, automotive, and aircraft systems. The main objective of this paper is to present information about the process of developing EFEA models for two configurations of a business jet, performing analysis for computing the vibration and the interior noise induced from exterior turbulent boundary layer excitation, and discussing the correlation between test data and simulation results. The structural EFEA model is generated from an existing finite element model used for stress analysis during the aircraft design process. Structural elements used in the finite element model for representing the complete complex aircraft structure become part of the EFEA structural model.
Technical Paper

Power Management Software Interfaces Standard

2006-11-07
2006-01-3034
The current system requirements for the power management subsystem and ground combat vehicles for the Future Combat System require higher power and voltages for greater energy efficiency, advanced mobility, lethality and survivability. Efficient and reliable electrical power management is an essential capability within current force ground combat vehicles and will become even more important with the increased electrical power demands of future force vehicles which will exceed the capabilities of onboard power generation/storage technologies. This paper describes how to meet the aforementioned power distribution challenges through the development of a power management software interfaces standard that will provide the flexibility required by various programs and vehicles yet still provide a consistent framework for software development providing a consistent environment for all future Army programs.
Technical Paper

Electrical Modeling and Simulation with Matlab/Simulink and Graphical User Interface Software

2006-11-07
2006-01-3039
This paper describes modeling and simulation technologies used to simulate the electrical systems of Army vehicles using Matlab/Simulink coupled with graphical user interface software. The models were built using Mathworks' Matlab/Simulink software in conjunction with the SimPowerSystems Toolbox, a toolkit provided by Mathworks that provides models of basic electrical components such as capacitors and inductors, in addition to more advanced components such as diodes and IGBT's. The current results of this ongoing effort are presented and discussed.
Technical Paper

Detection of Ice on Aircraft Tail Surfaces

2003-06-16
2003-01-2112
A method is presented here that detects aircraft tail surface icing that might normally be unobserved by the flight crew. Such icing can be detected through the action of highly computationally efficient signal processing of existing sensor signals using a so-called failure detection filter (FDF). The FDF creates a unique output signature permitting relatively early detection of tail surface icing. The FDF incorporates a stable state estimator from which the icing signature is created. This estimator is robust to analytical modeling errors or uncertainties, and to process noise (e.g. turbulence). Excellent performance of the method is demonstrated via simulation.
Technical Paper

An Electrorheologically Controlled Semi-Active Landing Gear

1993-04-01
931403
This study is to explore the application of electrorheology (ER) to the real-time control of damping forces that are transmitted through the nose landing gear for an F-106B aircraft. The main part of the landing gear is a strut that consists of a pneumatic spring and an ER controlled damper that is situated on the strut centerline and applies a force directly opposing the vertical displacement of the nose wheel. The damping element rotates in response to strut displacement, employing a co-axial arrangement of stator and rotor plates connected to the opposing electrodes in the control circuit. The vertical displacement is converted into rotation of the damper through a screw-nut mechanism. The ER fluid between the electrodes is thus engaged in shear along circumferential lines of action. This design results in a fast time response and a high ratio of strut forces achieved under ER- vs. zero-field control. Compact size and simplicity in fabrication are also attained.
Technical Paper

Recent Aircraft Tire Thermal Studies

1982-02-01
821392
A method has been developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions at the wheel and runway surface. Comparisons with buried thermocouples in actual aircraft tires shows good agreement.
Technical Paper

Airborne Laser Radar Investigations of Clear Air Turbulence

1966-02-01
660190
Conclusions based on the airborne experiments with laser radars are summarized in this paper. Details of the equipment and the flight procedures will be displayed during the oral presentation at the conference.
Technical Paper

Determining Machining Speeds from the Physical Properties of Metals

1964-01-01
640044
This paper develops an equation for calculating the machining speed for a specified tool-life by the use of three constants: a tool life-tool shape constant; a work material constant; and a size of cut constant. Representative values for these constants are tabulated, and curves showing the analytical relationship between v60 and feed as well as v60 and depth of cut are included. Experimental tests were conducted to verify the relationships, and the data are plotted on the calculated curves. The correlation between the calculated values of cutting speed with the experimental obtained values is good.
X