Refine Your Search

Topic

Search Results

Standard

Aircraft Noise Level Reduction Measurement of Building Facades

2023-08-16
WIP
ARP6973A
This proposed revision of the Aerospace Recommended Practice (ARP6973) will provide minor edits to the existing document, plus an alternative third method for measuring the aircraft noise level reduction of building façades that is currently being validated. Airports and their consultants will be able to use any of the three methods presented in this revised ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
Standard

Fuel Flow Rates for Jet-Powered Commercial Aircraft Taxi Operations

2023-04-04
CURRENT
AIR8035
This SAE Aerospace Information Report (AIR) summarizes prior empirical findings (AIAA 2018-3991; Chati, 2018) to recommend a modified baseline fuel flow rate model for jet-powered commercial aircraft during taxi operations on the airport surface that better reflects operational values. Existing standard modeling approaches are found to significantly overestimate the taxi fuel flow rate; therefore, a modified multiplicative factor is recommended to be applied to these existing approaches to make them more accurate. Results from the analysis of operational flight data are reported, which form the basis for the modeling enhancements being recommended.
Standard

Method to Calculate Behind Start of Takeoff Roll Noise Level Adjustments

2022-11-18
CURRENT
AIR6297
This document describes a method to calculate noise level adjustments at locations behind an airplane (described by an angular offset or directivity) at the start of takeoff roll (SOTR). This method is derived from empirical data from jet aircraft (circa 2004), most of which are configured with wing-mounted engines with high by-pass ratios (Lau, et al., 2012). Methods are also described which apply to modern turboprop aricraft. Calculations of other propagation-related adjustments required for aircraft noise prediction models are described in AIR1845A, ARP5534, ARP866A, and AIR5662.
Standard

Determination of Distance from Ground Observer to Aircraft for Acoustic Tests

2022-11-18
CURRENT
AIR902A
This document describes a practical system for a user to determine observer-to-aircraft distances. These observer-to-aircraft distances can be either closest point of approach (CPA) distances during field measurements or overhead distances during acoustic certification tests. The system uses a digital camera to record an image of the subject aircraft. A method of using commercial software to obtain the distance from such an image is presented. Potential issues which may affect accuracy are discussed.
Standard

Procedures for the Calculation of Airplane Fuel Consumption

2022-09-30
CURRENT
AIR6183
This SAE Aerospace Information Report (AIR) describes procedures for calculating fuel consumption for civil jet airplanes through all modes of operation for all segments of a flight. Turboprop and piston airplanes, as well as helicopters or unconventional aircraft, are not included in this AIR. The principle purpose of these procedures is to assist model developers in calculating airplane fuel consumption in a consistent and accurate manner that can be used to address various environmental assessments including those related to policy decisions and regulatory requirements. This AIR is intended to directly support the emission calculations documented in AIR5715. The models described in this AIR are intended to be used from the start of the takeoff roll to the end of the ground roll; taxi fuel consumption models are not included. If modelers have access to higher fidelity methods, they should use those methods in lieu of the ones in this AIR.
Standard

Aircraft Noise Level Reduction Measurement of Building Façades

2021-04-14
CURRENT
ARP6973
This Aerospace Recommended Practice (ARP) provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
Standard

Gas Turbine Jet Exhaust Noise Prediction

2021-01-05
CURRENT
ARP876F
ARP876 is intended to provide specific recommended procedures for the prediction of gas turbine jet exhaust system noise sources. Procedures are issued as separate sections, to allow for future updating as additional methods, consistent with state-of-the-art, become available.
Standard

Measurement of Far Field Noise from Gas Turbine Engines During Static Operation

2020-12-21
CURRENT
ARP1846B
Recommendations presented in this document are intended primarily for the acquisition of far-field noise data. The test engine is to be appropriately configured and operated so that the sound pressure levels obtained are consistent with the specific objectives of the test. The principal output of the data reduction system is one-third octave band sound pressure levels. However, when appropriate, data may be recorded for purposes of broader or narrower bandwidth analysis.
Standard

Ground-Plane Microphone Configuration for Propeller-Driven Light-Aircraft Noise Measurement

2020-12-21
CURRENT
ARP4055A
The scope of this ARP embraces the description of a configuration for a ground-plane microphone installation that may be used to determine sound pressure levels equivalent to those which would have been measured in an acoustic freefield at the microphone location. The one-third - octave-band center-frequency range over which equivalent freefield sound pressure levels may be obtained is from as low as 50 Hz to at least as high as 10,000 Hz. The specific application of the measurement technique described in this ARP is the determination of the equivalent freefield sound pressure levels of the noise produced by propeller-driven light aircraft, in flight, for sound incidence angles within 30 degrees of the normal to the ground. For larger angles to the normal, additional adjustments may be necessary which are outside the scope of this ARP.
Standard

Method for Modeling Line-of-Sight Blockage of Aircraft Noise

2020-02-20
CURRENT
AIR6501
This document describes methods for calculating the attenuation of sound due to line-of-sight blockage or shielding from non-level terrain. This method applies to sound propagating from an airplane to locations on the ground during ground roll, climbout after liftoff, and landing operations. AIR1845 and AIR5662 provides guidance for modeling aircraft noise at airports with flat terrain. In reality, many airports are surrounded by non-level terrain that may result in attenuation (or shielding) of sound at some receptors. This noise blockage can be accounted for with the line-of-sight blockage calculation, based on the difference in propagation path length between the direct path and propagation path over the top of terrain feature. The purpose of this aircraft information report is to provide a method that accounts for the attenuation due to line-of-sight blockage of aircraft noise by terrain features.
Standard

Monitoring Aircraft Noise and Operations in the Vicinity of Airports: System Validation

2020-01-28
WIP
ARP4721/2A
This SAE Aerospace Recommended Practice (ARP) provides engineering methods that can be applied to monitoring aircraft noise and operations in the vicinity of airports using either attended or unattended monitoring systems, as well as methods for validation of measurement results from permanent systems. Part 1 provides guidance on the components, installation and administration of permanent systems and guidance on analysis of data collected from temporary monitoring of aircraft noise. Part 2, this part, describes both system screening tests and detailed test methods for validating the data reported by permanently installed systems. This document is intended as a guide toward standard practice and is subject to change with experience and technical advances.
Standard

Monitoring Aircraft Noise and Operations in the Vicinity of Airports: System Description, Acquisition, and Operation

2020-01-28
WIP
ARP4721/1A
This SAE Aerospace Recommended Practice (ARP) provides engineering methods that can be applied to monitoring aircraft noise and operations in the vicinity of airports using either attended or unattended monitoring systems, as well as methods for validation of measurement results from permanent systems. Part 1 provides guidance on the components, installation and administration of permanent systems and guidance on analysis of data collected from temporary monitoring of aircraft noise. A separate document, Part 2, describes both system screening tests and detailed test methods for validating the data reported by permanently installed systems. This document is intended as a guide toward standard practice and is subject to change with experience and technical advances.
Standard

Method for Predicting Lateral Attenuation of Airplane Noise

2019-10-04
CURRENT
AIR5662
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption.
Standard

Measurement of Exterior Noise Produced by Aircraft Auxiliary Power Units (APUs) and Associated Aircraft Systems During Ground Operation

2013-07-19
WIP
ARP1307C
Test procedures are described for measuring noise at specific receiver locations (passenger and cargo doors, and servicing positions) and for conducting general noise surveys around aircraft. Procedures are also described for measuring noise level and directivity at noise source locations to facilitate the understanding and interpretation of the data. Requirements are identified with respect to instrumentation; acoustic and atmospheric environment; data acquisition, reduction and presentation, and such other information as is needed for reporting the results. This document makes no provision for predicting APU or component noise from basic engine characteristics or design parameters, nor for measuring noise of more than one aircraft operating at the same time. No attempt is made to suggest acceptable levels of noise or suitable subjective criteria for judging acceptability. ICAO Annex 16 Volume I Attachment C provides guidance on recommended maximum noise levels.
Standard

Measurement of Rotorcraft Interior Sound Pressure Levels

2012-08-16
CURRENT
ARP1964A
Satisfactory measurements of noise in personnel-occupied rotorcraft cabins may require test techniques different from those prescribed for other types of aircraft (ARP1323) because rotorcraft operate under significantly different flight conditions. Recommendations of this ARP apply to the recording of acoustical data on magnetic tape and the subsequent processing and analysis of the recorded data.
X