Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

On the Concept of Negative Impedance Instability in the More Electric Aircraft Power Systems with Constant Power Loads

The purpose of this paper is to present an assessment of the negative impedance instability concept of the constant power loads in the More Electric Aircraft (MEA) power systems. We address the fundamental problems faced in the stability studies of these multi-converter power electronic systems. An approach to the design of sliding-mode controllers for PWM DC/DC converters with constant power loads is presented. Because of the negative impedance destabilizing characteristics of constant power loads, conventional linear control methods have stability limitations around the operating points. However, the proposed controllers improve large-signal stability and dynamic responses. The proposed controllers are simulated and their responses under different operations are discussed. Finally, we verify the stability of the controllers using the second theorem of Lyapunov.
Technical Paper

Electrical System Architectures for Future Aircraft

This paper addresses the fundamental issues faced in the aircraft electrical system architectures. Furthermore, a brief description of the conventional and advanced aircraft power system architectures, their disadvantages, opportunities for improvement, future electric loads, role of power electronics, and present trends in aircraft power system research will be given. Finally, this paper concludes with a brief outline of the projected advancements in the future.
Technical Paper

Topological Variations of the Inverse Dual Converter for High-Power DC-DC Distribution Systems

New dc to dc converter topologies are presented which are suitable for high density high power supplies. Topological variations of the basic inverse dual converter (IDC) circuit such as the transformer coupled, the multiphase and the multipulse derivation of the single phase IDC have been analysed and some simulation results have been presented. It has been shown in a recent publication [1] that the single phase IDC offers a buck-boost operation over wide range without transformer, bidirectional power flow, and complementary commutation of the switches. The topologies examined in this paper have additional features such as lower device and component stresses, and smaller filter requirements, resulting in smaller size and weight. Some performance and possible applications are also examined. Finally the IDCs for serial and parallel power distribution, and ac tapping of the IDC are discussed.