Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Neural Network Modeling of Black Box Controls for Calibration of Internal Combustion Engines

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, these engines feature an increasing number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Towards the Design-driven Carbon Footprint reduction of Composite Aerospace and Automotive components: An overview

2024-06-12
2024-37-0032
Composite materials, pioneered by aerospace engineering due to their lightweight, strength, and durability properties, are increasingly adopted in the high-performance automotive sector. Besides the acknowledged composite components’ performance, enabled lightweighting is becoming even more crucial for energy efficiency, and therefore emissions along vehicle use phase from a decarbonization perspective. However, their use entails energy-intensive and polluting processes involved in raw material production, in manufacturing processes, and, in particular, in end-of-life disposal. Carbon footprint is the established indicator to assess the environmental impact of climate-changing factors on products or services. Research on different carbon footprint sources reduction is increasing, and even the European Composites Industry Association is demanding the development of specific Design for Sustainability approaches.
Technical Paper

A Non-Intrusive Approach for Measuring Data and Control Coupling b/w Software Components: Addressing the Challenges of DO-178C Compliance, Verification and Certification

2024-06-01
2024-26-0464
Software certification guidelines, such as RTCA DO-178C, mandate the analysis of data and control coupling (DC/CC) in safety-critical avionics software using requirement-based testing. The intention of this analysis is to ensure correctness in the interactions and dependencies between software components. The shift from confirming the coupling (as in DO-178B) to verifying the exercising of the coupling (as introduced in DO-178C) transitions the DC/CC objective from an analytical exercise against the test design to a measurement exercise against the test execution. Current methodologies for measuring Data Coupling and Control Coupling (DC/CC) rely on source code instrumentation, which embeds code to record coverage information during requirements-based testing. However, this approach has significant drawbacks. Primarily, it necessitates executing tests on both the instrumented and non-instrumented versions of the code, ensuring their outputs match.
Technical Paper

Stochastic Finite Element Formulation of a Three-Node Quadratic Bar Element with Non-Uniform Cross-Section Based on the Perturbation Method for Simultaneously Non-Deterministic Elastic Modulus and Applied Load

2024-06-01
2024-26-0470
The finite element method is one of the most robust tools in structural analysis. Typically, the input parameters in a finite element model are assumed to be deterministic. However, in practice, almost all material and geometrical properties, including the load, possess randomness. The consideration of the probabilistic nature of these quantities is essential to effectively designing a system that is robust against the uncertainties arising due to the variation in the input parameters, the significance of which has been documented by NASA in “Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners”, 2011. Among the various techniques applicable for stochastic analysis, the perturbation method, which is based on a sound mathematical foundation derived from Taylor’s series expansion, is widely acknowledged for its much higher efficiency compared to the well-known Monte-Carlo method.
Technical Paper

Study of Crew Seat Impact Attenuation System for Indian Manned Space Mission

2024-06-01
2024-26-0469
The descent phase of GAGANYAAN (Indian Manned Space Mission) culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge amount of loads are experienced by the astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems use honeycomb core, which is passive, expendable, can only be used once (at touchdown impact) during the entire mission and does not account off-nominal impact loads. Active and reusable attenuation systems for crew module is still an unexplored territory. Three configurations of impact attenuators were selected for this study for the current GAGANYAAN crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems.
Technical Paper

Reduction in Flight Operational Costs by Automating Weather Forecast Updates

2024-06-01
2024-26-0440
A GE Aviation Systems report documents that the National Oceanic and Atmospheric Administration (NOAA) provided weather forecast data has a bias of 15 knots and a standard deviation of 13.3 knots for the 40 flights considered for the research. It also had a 0.47 bias in the temperature with a standard deviation of 0.27. The temperature errors are not as significant as the wind. There is a potential opportunity to reduce the operational cost by improving the weather forecast. The flight management system (FMS) currently uses the weather forecast, available before takeoff, to identify an optimized flight path with minimum operational costs depending on the selected speed mode. Such a flight plan could be optimum for a shorter flight because these flight path planning algorithms are very less susceptible to the accuracy of the weather forecast.
Technical Paper

CFD Methodology Development to Predict Lubrication Effectiveness in Electromechanical Actuators

2024-06-01
2024-26-0466
Electromechanical actuators (EMAs) play a crucial role in aircraft electrification, offering advantages in terms of aircraft-level weight, rigging and reliability compared to hydraulic actuators. To prevent backdriving, skewed roller braking devices called "no-backs" are employed to provide braking torque. These technology components are continuing to be improved with analysis driven design innovations eg. U.S. Pat. No. 8,393,568. The no-back mechanism has the rollers skewed around their own transverse axis that allow for a combination of rolling and sliding against the stator surfaces. This friction provides the necessary braking torque that prevents the backdriving. By controlling the friction radius and analyzing the Hertzian contact stresses, the brake can be sized for the desired duty cycle. No-backs can be configured to provide braking torque for both tensile and compressive backdriving loads.
Technical Paper

Synergized Mixed-Signal System-on-Chip (SoC) Design and Development using System-level Modeling and Simulation

2024-06-01
2024-26-0463
In recent decades, research based innovative system-on-chip (SoC) design has been a very important issue, due to the emerging trends and application challenges. The SoCs encompass digital, analog and mixed-signal hardware and software components and even sensors and actuators. Modelling and simulation constitute a powerful method for designing and evaluating complex systems and processes for many analysts and project managers as they engage in state of-the-art research and development. Modelling and simulations not only help them with the algorithm or concept realization and design feasibility, but it also allows experimentation, optimization, interpretation of results and validation of model.
Technical Paper

Inverse Machine Learning Approach for Metasurface based Radar Absorbing Structure Design for Aerospace Applications

2024-06-01
2024-26-0480
Metasurfaces, comprised of sub-wavelength structures, possess remarkable electromagnetic wave manipulation capabilities. Their application as radar absorbers has gained widespread recognition, particularly in modern stealth technology, where their role is to minimize the radar cross-section (RCS) of military assets. Conventional radar absorber design are tedious by their time-consuming, computationally intensive, iterative nature, and demand a high level of expertise. In contrast, the emergence of deep learning-based metasurface design for RCS reduction represents a rapidly evolving field. This approach offers automated and computationally efficient means to generate radar absorber designs. However, the practical implementation of radar-absorbing structures on complex aircraft bodies presents significant challenges.
Technical Paper

Using Generative Models to Synthesize Multi-Component Asset Images for Training Defect Inspection Models

2024-06-01
2024-26-0474
Industries have been increasingly adopting AI based computer vision models for automated asset defect inspection. A challenging aspect within this domain is the inspection of composite assets consisting of multiple components, each of which is an object of interest for inspection, with its own structural variations, defect types and signatures. Training vision models for such an inspection process involves numerous challenges around data acquisition such as insufficient volume, inconsistent positioning, poor quality and imbalance owing to inadequate image samples of infrequently occurring defects. Approaches to augmenting the dataset through Standard Data Augmentation (SDA) methods (image transformations such as flipping, rotation, contrast adjustment, etc.) have had limited success. When dealing with images of such composite assets, it is challenging to correct the data imbalance at the component level using image transformations as they apply to all the components within an image.
Technical Paper

Stability of Hypersonic Boundary Layers on Flat Plates with Sharp and Blunt Leading Edges

2024-06-01
2024-26-0457
This research employs a comprehensive methodology to explore hypersonic boundary layers' stability and transition dynamics, focusing specifically on the influence of sharp and blunt leading edges. The Stanford University Unstructured (SU2) Computational Fluid Dynamics (CFD) solver is utilized to compute the mean flow over a flat plate, establishing a foundational basis for subsequent stability analysis. The extracted boundary layer profiles undergo validation against existing literature, ensuring accuracy and reliability. Further analysis is conducted using a Python code to generate input files for the Linear Stability Solver. The Linear Stability Solver analysis constitutes a crucial phase wherein the research delves into the eigenvalue spectra, identifying dominant modes and closely scrutinizing the role of the modes in the transition process within the hypersonic boundary layers.
Technical Paper

Fast Coupled Load Analysis through Reanalysis Technique: Formulation and Demonstration on Sample Problems

2024-06-01
2024-26-0459
In a typical Launch Vehicle (LV), dynamic responses due to various flight events are estimated through Coupled Load Analysis (CLA) where the launch vehicle is coupled with a spacecraft. A launch vehicle is subjected to various loads during its flight due to engine thrust depletion / shut-off, thrust oscillation, wind and gust, maneuvering loads. In aerospace industry a standard CLA is performed by generating the mathematical model of launch vehicle and coupling it with reduced mathematical model of satellite and applying the boundary conditions. A CLA is a time consuming process as several flight instances and load cases need to be considered along with generation of structural dynamic model at each time instants. For every new mission, the satellites are mission specific whereas the launch vehicle and the loads remain unchanged. To take advantage of this fact, a new method called “Fast CLA through Reanalysis technique” is proposed in the present paper.
Technical Paper

A Comparative Study of RANS and Machine Learning Techniques for Aerodynamic Analysis of Airfoils

2024-06-01
2024-26-0460
It is important to accurately predict the aerodynamic properties for designing applications which involves fluid flows, particularly in the aerospace industry. Traditionally, this is done through complex numerical simulations, which are computationally expensive, resource-intensive and time-consuming, making them less than ideal for iterative design processes and rapid prototyping. Machine learning, powered by vast datasets and advanced algorithms, offers an innovative approach to predict airfoil characteristics with remarkable accuracy, speed, and cost-effectiveness. Machine learning techniques have been applied to fluid dynamics and have shown promising results. In this study, machine learning model called the back-propagation neural network (BPNN) is used to predict key aerodynamic coefficients of lift and drag for airfoils.
Technical Paper

On the Aero-Thermo-Structural Performance of Rectangular and Axisymmetric Scramjet Configurations

2024-06-01
2024-26-0441
Scramjet-based hypersonic airbreathers are needed for next-generation defense and space applications. Two scramjet configurations, namely, rectangular and axisymmetric, are primarily studied in the literature. However, there is no quantitative comparison of the performance metrics between these two scramjet configurations. This study investigates the aero-thermo-structural performance of rectangular and axisymmetric scramjet engines at Mach 7 and 25 km altitude. A numerical framework involving computational fluid dynamics and computational structural dynamics is established. The aero-thermo-structural loads on the scramjet flow path are estimated using RANS/FANS simulation. A finite element-based coupled thermo-structural analysis is performed to understand the thermo-structural response. Before using the numerical models for the study, CFD and CSD modules are validated with literature data.
Technical Paper

Post Flight Simulation of Dynamic Responses at the Satellite Interface of a Typical Launch Vehicle During Solid Motor Ignition

2024-06-01
2024-26-0461
Launch vehicle structures in course of its flight will be subjected to dynamic forces over a range of frequencies up to 2000 Hz. These loads can be steady, transient or random in nature. The dynamic excitations like aerodynamic gust, motor oscillations and transients, sudden application of control force are capable of exciting the low frequency structural modes and cause significant responses at the interface of launch vehicle and satellite. The satellite interface responses to these low frequency excitations are estimated through Coupled Load Analysis (CLA). The analysis plays a crucial role in mission as the satellite design loads and Sine vibration test levels are defined based on this. The perquisite of CLA is to predict the responses with considerable accuracy so that the design loads are not exceeded in the flight. CLA validation is possible by simulating the flight experienced responses through the analysis.
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Assessing the Structural Feasibility and Recyclability of Flax/PLA Bio-Composites for Enhanced Sustainability

2024-06-01
2024-26-0407
Bio-composites have gained significant attention within the aerospace industry due to their potential as a sustainable solution that addresses the demand for lightweight materials with reduced environmental impact. These materials blend natural fibers sourced from renewable origins, such as plant-based fibers, with polymer matrices to fabricate composite materials that exhibit desirable mechanical properties and environmental friendliness. The aerospace sector's growing interest in bio-composites originates from those composites’ capacity to mitigate the industry's carbon footprint and decrease dependence on finite resources. This study aims to investigate the suitability of utilizing plant derived flax fabric/PLA (polylactic acid) matrix-based bio-composites in aerospace applications, as well as the recyclability potential of these composites in the circular manufacturing economy.
X