Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study of Crew Seat Impact Attenuation System for Indian Manned Space Mission

2024-06-01
2024-26-0469
The descent phase of GAGANYAAN (Indian Manned Space Mission) culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge amount of loads are experienced by the astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems use honeycomb core, which is passive, expendable, can only be used once (at touchdown impact) during the entire mission and does not account off-nominal impact loads. Active and reusable attenuation systems for crew module is still an unexplored territory. Three configurations of impact attenuators were selected for this study for the current GAGANYAAN crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

Analysis for Effect of Angle of Attack on Coefficient of Lift of Wing Structure

2024-06-01
2024-26-0450
Dimensional optimization has always been a time consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. In this study CFD analysis is performed to obtain pressure counter of wings. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the C L /C D ratio.
Technical Paper

Modeling and Validation of the Tire Friction on Wet Road

2024-04-09
2024-01-2307
In order to study the tire friction characteristics under wet skid surface, the “pseudo” hydrodynamic pressure bearing effect is used to be equivalent to the hydrodynamics of water film, and an advanced Lugre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The water hydroplaning dynamic tests were carried out for 285/70R19.5 tire under wet of different water film thickness and dry conditions, and the parameters of the advanced Lugre tire dynamic model were identified. The results show that the tire water-skiing model proposed in this paper can effectively simulate the friction characteristics of tires under different water film thicknesses. Under dry conditions, 0.5mm water film and 1mm water film road conditions, the relative errors of the maximum tire friction coefficient between the tested and advanced Lugre tire model are 1.11%, 0.12% and 0.16%, respectively.
Technical Paper

Sea-Level Characterization of Electrically Assisted Turbocharger for Use on Aviation Diesel Engine

2024-03-05
2024-01-1914
Airborne compression-ignition engine operations differ significantly from those in ground vehicles, both in mission requirements and in operating conditions. Unique challenges exist in the aviation space, and electrification technologies originally developed for ground applications may be leveraged to address these considerations. One such technology, electrically assisted turbochargers (EATs), have the potential to address the following: increase the maximum system power output, directly control intake manifold air pressure, and reignite the engine at altitude conditions in the event of an engine flame-out. Sea-level experiments were carried out on a two-liter, four-cylinder compression-ignition engine with a commercial-off-the-shelf EAT that replaced the original turbocharger. The objective of these experiments was to demonstrate the technology, assess the performance, and evaluate control methods at sea level prior to altitude experimentation.
Technical Paper

Experimental Analysis of the Behavior of Automotive Twin-Tube Dampers Degraded by Loss of Oil and Pressure

2023-12-06
2023-01-5084
Automotive dampers are essential vehicle components regarding vehicle dynamics by keeping the road contact and reducing wheel load fluctuations. So damper degradation could not only significantly influence driving comfort but also the dynamics and therefore driving safety. The aim of this study is to expand knowledge about the behavior of passive automotive twin-tube dampers degraded by loss of oil and pressure. This serves to improve the understanding of inner processes of the damper and modeling the behavior of degraded dampers. To analyze the damper behavior, an intact damper has been modified and validated to allow adjusting the oil and pressure level. Using a dynamic hydraulic damper test rig a preconditioning routine for degraded dampers is developed. With this routine, a wide measurement program at various amplitudes, frequencies, oscillations, and damper configurations is carried out and the obtained results are discussed.
X