Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Multi Attribute Balancing of NVH, Vehicle Energy Management and Drivability at Early Design Stage Using 1D System Simulation Model

2019-01-09
2019-26-0178
Improving fuel efficiency often affects NVH performance. Modifying a vehicle’s design in the latter stages of development to improve NVH performance is often costly. Therefore, to optimize the cost performance, a Multi-Attribute Balancing (MAB) approach should be employed in the early design phases. This paper proposes a solution based on a unified 1D system simulation model across different vehicle performance areas. In the scope of this paper the following attributes are studied: Fuel economy, Booming, Idle, Engine start and Drivability. The challenges to be solved by 1D simulation are the vehicle performance predictions, taking into account the computation time and accuracy. Early phase studies require a large number of scenarios to evaluate multiple possible parameter combinations employing a multi-attribute approach with a systematic tool to ease setup and evaluation according to the determined performance metrics.
Technical Paper

A Study on Practical Use of Diesel Combustion Calculation and Development of Automatic Optimizing Calculation System

2015-09-01
2015-01-1845
A KIVA code which is customized for passenger car's diesel engines is linked with an engine performance simulator and demonstrated with our optimizing calculation system. Aiming to fulfill our target calculation speed, the combustion model of the KIVA code is changed from a chemical reaction calculation method to a chemical equilibrium calculation method which is introduced a unique technique handling chemical species maps. Those maps contain equilibrium mole fraction data of chemical species according to equivalence ratio and temperature. Linking the KIVA code to the engine simulator helps to evaluate engine performance by indicated mean effective pressure (IMEP). The optimizing calculation system enables to obtain response surfaces. Observing the response surfaces, clear views of engine performance characteristics can be seen. The overview of this calculation system and some examples of the calculation are shown in this paper.
Journal Article

A Study on Knocking Prediction Improvement Using Chemical Reaction Calculation

2015-09-01
2015-01-1905
Compression ratio of newly developed gasoline engines has been increased in order to improve fuel efficiency. But in-cylinder pressure around top dead center (TDC) before spark ignition timing is higher than expectation, because the low temperature oxidization (LTO) generates some heat. The overview of introduced calculation method taking account of the LTO heat of unburned gas, how in-cylinder pressure is revised and some knowledge of knocking prediction using chemical kinetics are shown in this paper.
Journal Article

Role of Predictive Engineering in the Design Evolution of a Thermoplastic Fender for a Compact SUV

2011-04-12
2011-01-0768
Automotive fenders is one such example where specialized thermoplastic material Noryl GTX* (blend of Polyphenyleneoxide (PPO) + Polyamide (PA)) has successfully replaced metal by meeting functional requirements. The evolution of a fender design to fulfill these requirements is often obtained through a combination of unique material properties and predictive engineering backed design process that accounts for fender behavior during the various phases of its lifecycle. This paper gives an overview of the collaborative design process between Mitsubishi Motors Corporation and SABIC Innovative Plastics and the role of predictive engineering in the evolution of a thermoplastic fender design of Mitsubishi Motors Corporation's compact SUV RVR fender launched recently. While significant predictive work was done on manufacturing and use stage design aspects, the focus of this paper is the design work related to identifying support configuration during the paint bake cycle.
Technical Paper

Human Driving Behavior Analysis and Model Representation with Expertise Acquiring Process for Controller Rapid Prototyping

2011-04-12
2011-01-0051
Driving car means to control a vehicle according to a target path, e.g. road and speed, with some constraints. Human driving models have been proposed and applied for simulations. However, human control in driving has not been analyzed sufficiently comparing with that of machine control system in term of control theory. Input - output property with internal information processing is not easily measured and described. Response of human driving is not as quicker as that of machine controller but human can learn vehicle response to driving operation and predict target changes. Driving behavior of an expert driver and a beginner in an emission test cycle was measured and difference in target speed tracking was looked into with performance indices. The beginner's operation was less stable than that of the expert. Transfer function of the vehicle system was derived based on linearized model to investigate human driving behavior as a tracking controller in the system.
Technical Paper

A Layer Structured Model Based Diagnosis: Application to a Gear Box System

2011-04-12
2011-01-0753
OBD (On Board Diagnosis) has been applied to detect malfunctions in powertrains. OBD requirements have been extended to detect various failures for ensuring the vehicle emission control system being normal. That causes further costs for additional sensors and software works. Two layers diagnosis system is proposed for a passenger car gearbox system to detect changes from normal behavior. Conventional physical constraints based diagnosis is placed on the base layer. Model based diagnosis and specific symptom finding diagnosis are built on the second layer. Conventional physical constraints based diagnosis is direct and effective way to detect the failure of system if the detected signals exceed their normal ranges. However under the case of system failure with related signals still remain in normal ranges, the conventional detection measures can not work normally. Under this case, Model based diagnosis is proposed to enhance the functionality of diagnosis system.
Journal Article

Accelerated and Integrated Real Time Testing Process Based on Two Universal Controllers on Rapid Controller Prototyping

2008-04-14
2008-01-0285
Rapid Controller Prototyping (RCP) is an efficient method for design & development of ECU (Electronic Controller Unit) at early stage. Usually, RCP requires firstly performing Software-in-the-loop simulation and then connecting universal controller (e.g. MicroAutoBox) to real controlled system for testing of controller functionality. During this process, it is likely that some problems related to signal configuration and real time characteristics occur and consequently give rise to unexpected results, e.g., sensor signals or controlling signals produce large deviation and possibly damage components of real system under severe condition. On the other hand, it cannot make sure that the real time characteristics of designed controller are suitable just after applying Software-in-the-loop simulation.
Technical Paper

Direct Simulation for Aerodynamic Noise from Vehicle Parts

2007-08-05
2007-01-3461
Flows around a forward facing step and a fence are simulated on structured grid to estimate aerodynamic noise by using direct simulation. Calculated results of sound pressure level show quantitatively good agreement with experimental results. To estimate aerodynamic noise from 3D complex geometry, a simplified side mirror model is also calculated. Averaged pressure distribution on the mirror surface as well as pressure fluctuations on the mirror surface and ground are simulated properly. However, calculated result of sound pressure level at a location is about 20dB higher than experiment due to insufficient spatial resolution. To capture the propagation of sound waves, more accuracy seems to be required.
Technical Paper

Vibro-acoustic FEA Modeling of Two Layer Trim Systems

2005-05-16
2005-01-2325
This paper investigates the potential of using FEA poro-elastic Biot elements for the modeling carpet-like trim systems in a simplified setup. A comparison between FEA computations and experiments is presented for two layer (mass-spring) trim systems placed on a test-rig consisting in a 510×354×1.6 mm flat steel plate clamped in a stiff frame excited at its base. Results are presented for a given heavy layer with two different poro-elastic materials: one foam and one fibrous material. The investigations included accelerometer measurements on the steel plate, laser-doppler vibrometer scans of the heavy layer surface, sound pressure measurements in free field at a distance of 1 meter above the plate, as well as sound pressure in a closed rectangular concrete-walled cavity (0.5×0.6×0.7 m) put on top of the test-rig. Computations were carried out using a commercial FEA software implementing the Biot theory for poro-elastic media.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Evolution of Vehicle Computer Systems By Its Technologies

1998-10-19
98C013
ITS (intelligent transport systems) technologies accelerate the development of new vehicle functions using on-board electronic control systems coordinated with roadside facilities. Many kinds of advanced vehicle control systems and advanced information systems will be introduced into the market in the near future. The key technologies of these systems are not only the elemental technology of each mechanism, but also HMI (human machine interface) technology. Without proper HMI, drivers cannot use novel control systems safely, and cannot select suitable information during a drive. Furthermore, as an elemental technology for an on-board computer system, LAN systems with the proper gateway function are required in order to maintain and control various kinds of data, such as vehicle data, driver's condition and roadside information. Fusion of these data will produce new functions for the vehicle.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

NO Measurement in Diesel Spray Flame Using Laser Induced Fluorescence

1997-02-24
970874
NO, OH, and soot in combustion flame produced from burning at high temperature and pressure diesel fuel spray issuing from a single-hole injection nozzle was measured by laser induced fluorescence (LIF) and laser induced incandescence (LII) methods. The LIF images of OH showed that OH radical, distributed in a band-like zone outside the region of the flame luminescence observed, would persist even after the extinction of flame luminescence. The LIF images of NO showed that NO was located slightly outside the flame luminescence zone and that its region was almost the same as that of OH and would tended to increase in the latter period of the combustion process. Also, the LII images showed that the formation of soot would take place near the flame central zone coincident with the flame luminescence zone.
Technical Paper

Determination of Airbag Sensor Threshold Level by Graphic Method

1989-02-01
890193
When developing an airbag system with mechanical sensors, one of the important stages is to get satisfactory correlation between the sensor characteristics and the specific vehicle. This development stage requires control of both vehicle crashworthiness (including selection of sensor mount location) and airbag sensor characteristics. This stage is ordinarily performed through many iterations of a computer simulation which involves the dynamic structure of the sensor mechanism. A new graphic method is proposed in this paper to help in this simulation stage. This method can estimate the proper threshold level of the crash sensor. The airbag sensor mount location in the vehicle can be selected and the airbag sensor can be developed. The validity of the method has been verified by computer simulation as well as actual test results.
Technical Paper

CATALYST SYSTEMS DEVELOPMENT

1977-02-01
770197
This paper describes the results of studies on the behavior of air-fuel ratios under feedback control, the effect of air-fuel ratio modulation on three-way catalyst conversion efficiency and emission test results with and without feed back control. As a further measure for decreasing automobile exhaust emissions, the three-way catalyst activity for reduction of CO, HC and NOx emissions is most effectively utilized when the normal engine air-fuel ratio perturbations are controlled and limited. In order to attain such an objective, this report describes the governing characteristics of an air-fuel ratio control system using an EFl engine coupled to a ZrO2 type O2 sensor and feed back loop. The conversion efficiency characteristics of a conventional three-way catalyst, using systematically modulated air-fuel ratios, and the resultant reduction of exhaust emissions with these systematic fluctuations and limited perturbations are also defined.
X