Refine Your Search

Topic

Search Results

Technical Paper

Computational Optimization of a Diesel Engine Calibration Using a Novel SVM-PSO Method

2019-04-02
2019-01-0542
Accelerated computational optimization of a diesel engine calibration was achieved by combining Support Vector Regression models with the Particle Swarm Optimization routine. The framework utilized a full engine simulation as a surrogate for a real engine test with test parameters closely resembling a typical 4.5L diesel engine. Initial tests were run with multi-modal test problems including Rastragin's, Bukin's, Ackely's, and Schubert's functions which informed the ML model tuning hyper-parameters. To improve the performance of the engine the hybrid approach was used to optimize the Fuel Pressure, Injection Timing, Pilot Timing and Fraction, and EGR rate. Nitrogen Oxides, Particulate Matter, and Specific Fuel Consumption are simultaneously reduced. As expected, optimums reflect a late injection strategy with moderately high EGR rates.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Technical Paper

Augmentation of an Artificial Neural Network (ANN) Model with Expert Knowledge of Critical Combustion Features for Optimizing a Compression Ignition Engine Using Multiple Injections

2017-03-28
2017-01-0701
The objective of this work was to identify methods of reliably predicting optimum operating conditions in an experimental compression ignition engine using multiple injections. Abstract modeling offered an efficient way to predict large volumes data, when compared with simulation, although the initial cost of constructing such models can be large. This work aims to reduce that initial cost by adding knowledge about the favorable network structures and training rules which are discovered. The data were gathered from a high pressure common rail direct injection turbocharged compression ignition engine utilizing a high EGR configuration. The range of design parameters were relatively large; 100 MPa - 240 MPa for fuel pressure, up to 62% EGR using a modified, long-route, low pressure EGR system, while the pilot timing, main timing, and pilot ratio were free within the safe operating window for the engine.
Technical Paper

Trade-Offs Between Emissions and Efficiency for Multiple Injections of Neat Biodiesel in a Turbocharged Diesel Engine Using an Enhanced PSO-GA Optimization Strategy

2016-04-05
2016-01-0630
Particle Swarm and the Genetic Algorithm were coupled to optimize multiple performance metrics for the combustion of neat biodiesel in a turbocharged, four cylinder, John Deere engine operating under constant partial load. The enhanced algorithm was used with five inputs including EGR, injection pressure, and the timing/distribution of fuel between a pilot and main injection. A merit function was defined and used to minimize five output parameters including CO, NOx, PM, HC and fuel consumption simultaneously. The combination of PSO and GA yielded convergence to a Pareto regime without the need for excessive engine runs. Results along the Pareto front illustrate the tradeoff between NOx and particulate matter seen in the literature.
Technical Paper

Effects of Fuel Compositions on Diesel Engine Performance Using Ammonia-DME Mixtures

2013-04-08
2013-01-1133
Various mixtures of ammonia (NH₃) and dimethyl ether (DME) were tested in a diesel engine to explore the feasibility of using ammonia as an alternative, non-carbon fuel to mitigate greenhouse gas emissions. The original diesel fuel injection system was replaced with a new system for injecting ammonia-DME mixtures into the cylinder directly. The injection pressure was maintained at approximately 206 bar for various fuel mixtures including 100% DME, 60%DME-40%NH₃, and 40%DME-60%NH₃ (by weight). As ammonia content was increased in the fuel mixture, the injection timing needed to be advanced to ensure successful engine operation. It was found that cycle-to-cycle variation increased significantly when 40%DME-60%NH₃ was used. In the meantime, combustion of 40%DME-60%NH₃ exhibited HCCI characteristics as the injection timing ranged from 90 to 340 before top-dead-center (BTDC). Emissions data show that soot emissions remained extremely low for the fuel mixtures tested.
Technical Paper

Modeling Evaporating Diesel Sprays Using an Improved Gas Particle Model

2013-04-08
2013-01-1598
Accurate modeling of evaporating sprays is critical for diesel engine simulations. The standard spray and evaporation models in KIVA-3V tend to under-predict the vapor penetration, especially at high ambient pressure conditions. A sharp decrease of vapor penetration gradient is observed soon after the liquid spray is completely evaporated due to the lack of momentum sources beyond the liquid spray region. In this study, a gas particle model is implemented in KIVA-3V which tracks the momentum sources resulting from the evaporated spray. Lagrangian tracking of imaginary gas particles is considered until the velocity of the gas particle is comparable to that of the gas phase velocity. The gas particle continuously exchanges momentum with the gas phase and as a result the vapor penetrations are improved. The results using the present gas particle model is compared with experimental data over a wide range of ambient conditions and good levels of agreement are observed in vapor penetration.
Technical Paper

Effect of Flowfield Non-Uniformities on Emissions Predictions in HSDI Engines

2011-04-12
2011-01-0821
The role of the fluid motion in a diesel engine on mixing and combustion was investigated using the CFD code Kiva-3v. The study considered pre-mixed charge compression ignition (PCCI) combustion that is a hybrid combustion system characterized by early injection timings and high amounts of EGR dilution to delay the start and lower the temperature of combustion. The fuel oxidizer mixture is not homogeneous at the start of combustion and therefore requires further mixing for complete combustion. PCCI combustion systems are characterized by relatively high CO and UHC emissions. This work investigates attenuating CO emissions by enhancing mixing processes through non-uniform flowfield motions. The fluid motion was characterized by the amount of average angular rotation about the cylindrical axis (swirl ratio) and the amount of non-uniform motion imparted by the relative amounts of mass inducted through tangential and helical intake ports in a 0.5L HSDI diesel engine.
Journal Article

Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion

2009-11-02
2009-01-2699
The effects of spray targeting on mixing, combustion, and pollutant formation under a low-load, late-injection, low-temperature combustion (LTC) diesel operating condition are investigated by optical engine measurements and multi-dimensional modeling. Three common spray-targeting strategies are examined: conventional piston-bowl-wall targeting (152° included angle); narrow-angle floor targeting (124° included angle); and wide-angle piston-bowl-lip targeting (160° included angle). Planar laser-induced fluorescence diagnostics in a heavy-duty direct-injection optical diesel engine provide two-dimensional images of fuel-vapor, low-temperature ignition (H2CO), high-temperature ignition (OH) and soot-formation species (PAH) to characterize the LTC combustion process.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Technical Paper

Effects of Biodiesel Blends on Emissions in Low Temperature Diesel Combustion

2009-04-20
2009-01-0485
The simultaneous reduction of particulate matter (PM) and nitrous oxides (NOx) emissions form diesel exhaust is key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction of PM and NOx due to improved combustion mechanisms will continue to be an important field in research and development of modern diesel engines. Furthermore increasing prices and question over the availability of diesel fuel derived from crude oil has introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. In this study the performance of different biodiesel blends under low temperature combustion conditions (i.e., high exhaust gas recirculation and advanced fuel injection schemes) was investigated.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Technical Paper

Effects of Biodiesel Blends on the Performance of Large Diesel Engines

2008-04-14
2008-01-1389
Particulate matters, nitrogen oxides, and carbon monoxides emissions from large utility generators using diesel/biodiesel blends were measured. Stack measurements were performed on-site in a number of power plants by following the standard procedure of US EPA. The test engines were chosen to represent typical diesel engines used for electricity generation in the state. Tests were performed using the regular diesel fuel (B0), 10%, 20% and 100% biodiesel blends (B10, B20, B100). Test results showed that particulate matters and carbon monoxides decreased significantly as biodiesel content increases, whereas nitrogen oxides increased. Test results are consistent with other studies using mobile engines in the literature. Note that arbitrary changes in fuel or engine operating conditions are prohibited in power generation industry. Results of this study have been used by the state government to allow the use of biodiesel blends in stationary generators.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2007-04-16
2007-01-0119
A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

Effects of Engine Operating Parameters on near Stoichiometric Diesel Combustion Characteristics

2007-04-16
2007-01-0121
Stoichiometric combustion could enable a three-way catalyst to be used for treating NOx emissions of diesel engines, which is one of the most difficult species for diesel engines to meet future emission regulations. Previous study by Lee et al. [1] showed that diesel engines can operate with stoichiometric combustion successfully with only a minor impact on fuel consumption. Low NOx emission levels were another advantage of stoichiometric operation according to that study. In this study, the characteristics of stoichiometric diesel combustion were evaluated experimentally to improve fuel economy as well as exhaust emissions The effects of fuel injection pressure, boost pressure, swirl, intake air temperature, combustion regime (injection timing), and engine load (fuel mass injected) were assessed under stoichiometric conditions.
Technical Paper

Assessment of Diesel Engine Size-Scaling Relationships

2007-04-16
2007-01-0127
Engine development is both time consuming and economically straining. Therefore, efforts are being made to optimize the research and development process for new engine technologies. The ability to apply information gained by studying an engine of one size/application to an engine of a completely different size/application would offer savings in both time and money in engine development. In this work, a computational study of diesel engine size-scaling relationships was performed to explore engine scaling parameters and the fundamental engine operating components that should be included in valid scaling arguments. Two scaling arguments were derived and tested: a simple, equal spray penetration scaling model and an extended, equal lift-off length scaling model. The simple scaling model is based on an equation for the conservation of mass and an equation for spray tip penetration developed by Hiroyasu et al. [1].
Technical Paper

Predicting Effects of DME on the Operating Range of Natural Gas-Fueled Compression Ignition Engines

2007-04-16
2007-01-0620
Numerical models were used to study the effects of dimethyl ether (DME) on the operation of a compression-ignition engine fueled with premixed natural gas. The models used multi-dimensional engine CFD coupled with detailed chemical kinetics. Combustion characteristics of various compositions of the natural gas and DME mixture were simulated. Results showed that combustion phasing, nitrogen oxides emissions, and effects of fuel compositions on engine operating limits were well predicted. Chemical kinetics analysis indicated that ignition was achieved by DME oxidation, which, in turn, induced natural gas combustion. It was found that low temperature heat release became more significant as DME concentration increased. For an appropriate amount of DME in the mixture, the stable engine operating range became narrower as natural gas concentration increased. The model also captured the low temperature combustion features of the present engine with low nitrogen oxides emissions.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Flamelet Modeling with LES for Diesel Engine Simulations

2006-04-03
2006-01-0058
Large Eddy Simulation (LES) with a flamelet time scale combustion model is used to simulate diesel combustion. The flamelet time scale model uses a steady-state flamelet library for n-heptane indexed by mean mixture fraction, mixture fraction variance, and mean scalar dissipation rate. In the combustion model, reactions proceed towards the flamelet library solution at a time scale associated with the slowest reaction. This combination of a flamelet solution and a chemical time scale helps to account for unsteady mixing effects. The turbulent sub-grid stresses are simulated using a one-equation, non-viscosity LES model called the dynamic structure model. The model uses a tensor coefficient determined by the dynamic procedure and the subgrid kinetic energy. The model has been expanded to include scalar mixing and scalar dissipation. A new model for the conditional scalar dissipation has been developed to better predict local extinction.
Technical Paper

Development and Application of a Non-Gradient Step-Controlled Search Algorithm for Engine Combustion Optimization

2006-04-03
2006-01-0239
A new search technique, called Non-Gradient Step-Controlled algorithm (NGSC), is presented. The NGSC was applied independently from pre-selected starting points and as a supplement to a Genetic Algorithm (GA) to optimize a HSDI diesel engine using split injection strategies. It is shown that the NGSC handles well the challenges of a complex response surface and factor high-dimensionality, which demonstrates its capability as an efficient and accurate tool to seek “local” convergence on complex surfaces. By directly tracking the change of a merit function, the NGSC places no requirement on response surface continuity / differentiability, and hence is more robust than gradient-dependent search techniques. The directional search mechanism takes factor interactions into consideration, and search step size control is adopted to facilitate search efficiency.
Technical Paper

Spray Targeting to Minimize Soot and CO Formation in Premixed Charge Compression Ignition (PCCI) Combustion with a HSDI Diesel Engine

2006-04-03
2006-01-0918
The effect of spray targeting on exhaust emissions, especially soot and carbon monoxide (CO) formation, were investigated in a single-cylinder, high-speed, direct-injection (HSDI) diesel engine. The spray targeting was examined by sweeping the start-of-injection (SOI) timing with several nozzles which had different spray angles ranging from 50° to 154°. The tests were organized to monitor the emissions in Premixed Charge Compression Ignition (PCCI) combustion by introducing high levels of EGR (55%) with a relatively low compression ratio (16.0) and an open-crater type piston bowl. The study showed that there were optimum targeting spots on the piston bowl with respect to soot and CO formation, while nitric oxide (NOx) formation was not affected by the targeting. The soot and CO production were minimized when the spray was targeted at the edge of the piston bowl near the squish zone, regardless of the spray angle.
X