Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Sheet Thinning during Plane-Strain Bending

2009-04-20
2009-01-1394
Knowledge of the net thinning strain that occurs in a sheet as it is bent over a single radius is an important component in understanding sheet metal formability. The present study extends the initial work of Swift on thinning during plane-strain bending to sheet steels with power law stress-strain behavior and with the inclusion of friction. The experimental data come from studies on the enhanced forming limit curve on DQSK steel and analysis of the curl behavior of 590R and DP600 steels. Results for single radius bending from these studies are used in the present investigation. It has been found that the amount of net thinning strain depends on back tension, initial plane-strain yield strength, and the maximum true bending strain calculated for the neutral plane at the mid-thickness of the sheet.
Technical Paper

Predicting the Radius of a Sheet Bent Around Drawbeads

2009-04-20
2009-01-1395
Drawbeads in production stamping dies often have insufficient penetration of the male bead into the female cavity. With insufficient penetration, the actual bending radii of the sheet metal are larger than the geometrical radii of the drawbead. The actual bending radii in the sheet directly affect the force that restrains sheet movement. To predict the restraining stress due to a drawbead, it is necessary to know the actual bending radii in the sheet as it passes though the drawbead. Data from a previous study are used to develop empirical regression equations for predicting measured radii of the sheet that is bent around the radii in a drawbead. A physical model for the evolution of the sheet radii as the drawbead closes is proposed. This model is consistent with the empirical equations and the mechanics of the sheet bending process.
Technical Paper

Effect of Draw Beads on the Mechanical Properties of Sheel Sheet

2007-04-16
2007-01-1692
Draw beads are used in many stamping dies to control the flow of metal into a die cavity. The multiple bends imposed by the draw beads cause a change in the mechanical properties of the sheet before it enters the die cavity. Since the necessary data to completely characterize the full deformation history of a sheet passing through draw beads are not available, it is not possible to use a fundamental approach to determine the effect on subsequent mechanical properties. In the present investigation data from a prior study [1] are used to develop empirical relationships to predict the yield strength, uniform elongation and tensile strength as a function of the cumulative maximum effective bending strain (ε̅max-cum) due to draw beads and the entry radius to a die cavity.
Technical Paper

The Effective Unloading Modulus for Automotive Sheet Steels

2006-04-03
2006-01-0146
In stamping advanced high strength steels (AHSS), the deviations from desired part geometry caused by springback from a radius, curl, twist, and bow are major impediments to successfully producing AHSS parts. In general, the conventional elastic modulus is used to quantify the strain that occurs on unloading. This unloading strain causes deviations from desired part geometry. Considerable evidence in the literature indicates that for tensile testing, the conventional elastic modulus does not accurately describe the unloading strain. The present study uses new data and results from the literature to examine the average slope of tensile stress strain curves on unloading. This slope is termed the effective unloading modulus. The results from this study quantitatively describe how the effective unloading modulus decreases with increasing strength, prestrain, and unloading time.
Technical Paper

Bauschinger Effect Response of Automotive Sheet Steels

2005-04-11
2005-01-0084
In a study of the Bauschinger effect, data were collected from three sources in the published literature. Quantitative stress-strain data were taken from these papers, and the results re-analyzed. The resulting database has 44 lots of sheet steels, including drawing quality, interstitial free, bake hardening, HSLA (and related grades), dual phase, TRIP, recovery annealed, and martensitic grades. In analyzing the data, it is found that use of the 0.05% yield strength on reversal instead of the conventional 0.2% yield strength provides more generality in explaining the results. In this analysis, the Bauschinger effect is characterized by a term (BE), which is the difference between the steel strength just prior to reversal and the 0.05% yield strength on reversal normalized by the strength just prior to reversal. An initial prestrain of 2% is needed to establish a dislocation morphology that can be generalized across many of the steel grades.
Technical Paper

Tensile Properties of Steel Tubes for Hydroforming Applications

2004-03-08
2004-01-0512
With the increased use of tubular steel products, especially for automotive hydroforming applications, there is increased interest in understanding the mechanical properties measured by tensile tests from specimens of different orientations in the tube. In this study, two orientations of tensile specimens were evaluated -- axial specimens with and without flattening and flattened circumferential specimens. Three steels were evaluated -- two thicknesses of aluminum killed drawing quality (AKDQ) steel and one thickness of high strength low alloy (HSLA) steel. Mechanical property data were obtained from the flat stock, conventional production tubes and quasi tubes. Quasi tubes were produced from the flat stock on a 3-roll bender, but the quasi tube was not welded or sized.
Technical Paper

Analysis of Surface Morphology Change Due to Forming of Zinc-Coated Sheet Steels for Automotive Panel Applications

2000-03-06
2000-01-0310
A three-dimensional surface profilometer has been used to examine the surface morphology in various regions of stamped automotive steel parts. This analysis provides insight into the nature of the surface morphology development during stamping. For this work, four stamped zinc-coated sheet steel sections were considered. Each of the sections was examined with the 3-D surface profilometer in a variety of regions suspected to show different surface morphology due to differences in forming. Upon analysis of the surface height frequency histograms, different modes of deformation on the part surface were identified and categorized. Three modes of surface deformation were observed - “simple pressing”, “pressing with small scale sliding and bending” and “pressing with gross sliding, stretching and bending”. Each mode had a distinctive set of characteristics in the frequency height histograms. These modes were observed in both galvannealed steel sheet and hot-dipped galvanized steel sheet.
Technical Paper

Frictional Behavior of Electrogalvanized Sheet Steels

1993-03-01
930809
The frictional behavior of two nominally 70 g/m2 electrogalvanized sheet steels, mechanically processed with a series of surface roughnesses and coating morphologies, were evaluated with the bending under tension test. The crystallographic textures for the as-received materials were different; one was primarily prismatic with a friction coefficient of 0.14 and the other was primarily low angle pyramidal with a friction coefficient of 0.20. The friction coefficients were changed by surface modifications and values as high as 0.31 were observed. Friction data are discussed in terms of surface roughness, interfacial contact pressure, true contact area, and crystallographic texture. Results are interpreted on the basis of the deformation characteristics of the zinc coatings and with respect to overall sheet formability characteristics.
Technical Paper

Formability of Type 304 Stainless Steel Sheet

1993-03-01
930814
Punch-stretch tests to determine formability of type 304 stainless steel sheet were conducted using a hemispherical dome test. Sheets of 19.1 mm width and 177.8 mm width were stretched on a 101.6 mm diameter punch at punch rates between 0.042 to 2.12 mm/sec with three lubricant systems: a mineral seal oil, thin polytetrafluoroethelyne sheet with mineral seal oil, and silicone rubber with mineral seal oil. The resulting strain distributions were measured and the amount of martensite was determined by magnetic means. Increasing lubricity resulted in more uniform strain distributions while increased punch rates tended to decrease both strain and transformation distributions. High forming limit values were related to the formation of high and uniformly distributed martensite volume fractions during deformation. The results of this study are interpreted with an analysis of the effects of strain and temperature on strain induced martensite formation in metastable austenitic stainless steels.
Technical Paper

Carbon and Sulfur Effects on Performance of Microalloyed Spindle Forgings

1993-03-01
930966
Five heats of vanadium-microalloyed steel with carbon contents from 0.29% to 0.40% and sulfur contents from 0.031% to 0.110% were forged into automotive spindles and air cooled. Three of the steels were continuously cast whereas the other two were ingot cast. The forged spindles were subjected to microstructural analysis, mechanical property testing, full component testing and machinability testing. The microstructures of the five steels consisted of pearlite and ferrite which nucleated on prior austenite grain boundaries and predominantly on intragranularly dispersed sulfide inclusions of the resulfurized grades. Ultimate tensile strengths and room temperature Charpy V-notch impact toughness values were relatively insensitive to processing and compositional variations. The room temperature tensile and room-temperature impact properties ranged from 820 MPa to 1000 MPa (120 to 145 ksi) and from 13 Joules to 19 Joules (10 to 14 ft-lbs), respectively, for the various steels.
X