Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-04-17
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
Technical Paper

Investigation of Propagation of Viruses and Risk of Infection in Automobile Cabins

2024-04-09
2024-01-2579
The author has developed UV based photocatalytic air purification system (Mathur, 2021, 2122, 2023) that can eliminate all pathogens from the cabin air including COVID-19. In this study, the focus is to determine the risk of infection due to pathogens/germs in the cabin of an automobile. Author has determined the risk of infection by using Wells-Riley model and conducted CFD analysis to determine propagation of virus in cabin as a function of: 1 Cabin Volume & Number of Occupants (Wells-Riley Model in OSA mode): (i) Cabin volume from: Small Sedan, Large Sedan and a SUV; with 4 occupants (males & females); Number of infector 1; Air flowrate (m3/min); (ii) A 15-seater minibus – with 10 occupants (males); Number of infectors 1 & 2; Air flowrate (m3/min) 2 CFD to simulate 4 occupants and 1 infector in an automotive cabin – Current investigation is for talking, coughing and sneezing with blower off in Recirc mode wit (i) Infector in the front seat; (ii) Infector in the rear seat.
Technical Paper

Developing dynamic driver head envelope for passenger cars considering real-time road conditions

2024-04-09
2024-01-2493
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances.
Technical Paper

Development of a Dynamic Nonlinear Finite Element Model of the Large Omnidirectional Child Crash Test Dummy

2024-04-09
2024-01-2509
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model.
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

Design, Analysis, and Comparative Study of Conventional Double Wishbone Control Arms with Modified Split Type Control Arms Design for a Passenger Car

2024-04-09
2024-01-2519
In today's automotive industry, the preference for suspension systems in high-end passenger vehicles is shifting away from conventional MacPherson or double wishbone setups and toward advanced double wishbones with split-type control arms or multi-link suspensions. This shift not only enhances the ride and handling experience but also introduces greater design complexities. This paper explains the design limitations of the conventional double wishbone front suspension (with 2 ball joints) and the opportunities presented by advanced double wishbone suspension designs, including split-type lower control arms (with 3 ball joints) and double split-type control arms (with 4 ball joints). Replacing either of the rigid links (upper/lower) of the conventional double wishbone suspension with a four-bar mechanism in the case of split-type control arm wishbone suspension significantly alters the behavior of the kingpin axis, leading to consequential effects on steering and suspension parameters.
Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Technical Paper

Importance of Pole Side Impact Test for Assessment of Curtain Airbags

2024-01-16
2024-26-0019
Government of India, in 2017, mandated a Side Impact Test (AIS 099 technically aligned to UN ECE Regulation No. 95.03 series of amendments) on M1 category Passenger Vehicles to ensure protection of occupants in lateral impact accident scenarios. Later, in 2022, a draft notification has been issued by the Government mandating installation of 6 airbags (2 Nos of thorax side airbags, 2 Nos of head protection or curtain airbags in addition to already mandated installation of Driver and Passenger Airbags) in all such passenger vehicles. However, the vehicles fitted with side thorax airbag and curtain airbags are proposed to be assessed as per AIS099 test only. Curtain Airbags are typically installed to protect occupant’s head from severe injuries in narrow object impacts simulated in Pole Side Impact Test Configurations. However, at present, India has not notified an equivalent standard to UN R135 demanding performance of the vehicle in pole side impact scenarios.
Technical Paper

Seatback Failures and Human Tolerance in Severe Rear Impacts

2024-01-16
2024-26-0003
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback.
Technical Paper

Virtual Reality Based Study on Pre-Impact Position of Auto Rickshaw Driver

2023-11-10
2023-28-0118
The role of Virtual Reality (VR) platform for experimental studies to mitigate severe injuries is known. A Virtual Reality (VR) module was developed to provide an Indian auto-rickshaw driver experience using commercially available Oculus Quest 2 VR headset. A Driver Behaviour Questionnaire (DBQ) was developed and a study carried out among 20 auto-rickshaw drivers in Thanjavur, India. The DBQ questions provided data to shortlist the most likely near crash experiences among the surveyed drivers. A virtual reality environment was created using UNITY HUB software for one selected scenario from the DBQ survey analysis. A group of 10 volunteers to experience the event using VR gear in the biomechanical laboratory with reflective markers fixed on the body joints of the volunteers to obtain corresponding joint angles in the Neck, Lumbar, Shoulder, Hip, and Knee regions.
Technical Paper

Dynamometric Investigation on Airborne Particulate Matter from Brake of Automobile: Impact of Disc Materials on Brake Emission Factor

2023-11-05
2023-01-1861
Non-exhaust airborne particulate matter (PM) from automobiles might lead to potential adverse effects on the respiratory system. In this work, we evaluated the impact of surface properties of disc rotors on brake wear PM emission for passenger vehicles. Dynamometric measurements using the novel cycle were made for gray cast iron (GCI), nitrocarburized (NC), and superhard ceramic coated (SCC) disc rotors using non-steel (N/S) friction materials. The brake emission factors (BEF) for the GCI and NC disc rotors ranged from 1.76 to 1.74 mg/km/vehicle, whereas that of the SCC rotor exhibited a much-reduced value of 0.50 mg/km/vehicle. As the hardness of the SCC rotor increases (> 1150 HV), lower BEF was obtained, whereas the coefficient of friction (COF) of the SCC disc was more than 20 % higher than the NC rotor. Temperature-dependent data indicated that disc temperature (Tdisc) for the SCC disc (~115 °C) was lower than that for the GCI and NC (Tdisc >130 °C).
Journal Article

Ligaments Laxity and Elongation at Injury in Flexed knees during Lateral Impact Conditions

2023-06-27
2022-22-0003
The knee is one of the regions of interest for pedestrian safety assessment. Past testing to study knee ligament injuries for pedestrian impact only included knees in full extension and mostly focused on global responses. As the knee flexion angle and the initial ligament laxity may affect the elongation at which ligaments fail, the objectives of this study were (1) to design an experimental protocol to assess the laxity of knee ligaments before measuring their elongation at failure, (2) to apply it in paired knee tests at two flexion angles (10 and 45 degrees). The laxity tests combined strain gauges to measure bone strains near insertions that would result from ligament forces and a custom machine to exercise the knee in all directions. Failure was assessed using a four-point bending setup with additional degrees of freedom on the axial rotation and displacement of the femur. A template was designed to ensure that the two setups used the exact same starting position.
Journal Article

Lower Extremity Validation of a Human Body Model for High Rate Axial Loading in the Underbody Blast Environment

2023-06-27
2022-22-0004
While the use of Human Body Models (HBMs) in the underbody blast (UBB) environment has increased and shown positive results, the potential of these models has not been fully explored. Obtaining accurate kinematic and kinetic response are necessary to better understand the injury mechanisms for military safety applications. The objective of this study was to validate the Global Human Body Models Consortium (GHBMC) M50 lower extremity using a combined objective rating scheme in vertical and horizontal high-rate axial loading. The model’s lower extremity biomechanical response was compared to Post Mortem Human Subjects (PMHS) subjects for vertically and horizontally-applied high rate axial loading. Two distinct experimental setups were used for model validation, comprising a total of 33 distinct end points for validation.
Journal Article

Understanding Head Injury Risks during Car-to-Pedestrian Collisions Using Realistic Vehicle and Detailed Human Body Models

2023-06-27
2022-22-0006
Traumatic brain injury (TBI) is the leading cause of death and long-term disability in road traffic accidents (RTAs). Researchers have examined the effect of vehicle front shape and pedestrian body size on the risk of pedestrian head injury. On the other hand, the relationship between vehicle front shape parameters and pedestrian TBI risks involving a diverse population with varying body sizes has yet to be investigated. Thus, the purpose of this study was to comprehensively study the effect of vehicle front shape parameters and various pedestrian bodies ranging from 95th percentile male (AM95) to 6 years old (YO) child on the dynamic response of the head and the risk of TBIs during primary (vehicle) impact.
Journal Article

Tonality Perception Lessons Learned

2023-05-08
2023-01-1104
The future is expected to bring Advanced Air Mobility (AAM) vehicles, including small unmanned aerial systems (sUAS), urban air mobility (UAM) vehicles and regional air mobility (RAM) vehicles. These manned and unmanned vehicles are propelled by rotors. Rotors tend to generate tonal sound as their blades interact periodically with airflow features. Since people are more sensitive to tonality, including tones, than broad band sound, AAM generated tonality is expected to be an important consideration for design. In this paper several tonality metrics are examined for their ability to explain perceived annoyance of AAM flyover noise as measured by NASA’s Rotorcraft Sound Quality Metric 1 (RoQM-1) test. The various investigated metrics use one-third octave band, narrow band, and autocorrelation analysis. It is observed that tonality influences but does not control perceived flyover noise annoyance due to other sound qualities like roughness, consistent with previous work.
Technical Paper

Development of a Neck Finite Element Model with Active Muscle Force for the THOR-50M Numerical Dummy

2023-04-11
2023-01-0002
With the development of active safety technology, effort has gradually shifted to preventing or minimizing car crashes. Automatic Emergency Braking Technology (AEB) can avoid accidents by warning and even automatic braking, but there is a contradiction between the accompanying occupant out-of-position and traditional passive safety design. In addition, the 2025 version of C-NCAP plans to add neck injury assessment requirements for AEB [1]. In order to study the kinematic response of the occupant's neck under AEB, a neck finite element model with active muscle force is established in this paper. Firstly, the open-source THOR-50M neck geometric model is used for finite element discretization. Secondly, the neck FE model of THOR-50M is verified through the qualification procedure of the NHTSA standard. Thirdly, according to the geometric features of human neck muscles in Zygote Body database, the neck muscle parameters are preliminarily determined.
Technical Paper

ES2re, WS50M, and Human Body Models in Far-Side Pole Impacts

2023-04-11
2023-01-0558
Driver oblique far-side sled impacts were simulated with three surrogates. The EuroSID side impact dummy with rib extension (ES2re), the WorldSID side impact 50th percentile male dummy (WS50M), and the Global Human Body Modeling Consortium’s 50th percentile male human body (GHBM) models. The versions of the surrogates’ models were 7.0, 7.5.1, and 5.0, respectively. Surrogates were seated in the front left driver seat in a virtual generic crossover sled environment. The Finite Element (FE) based environment consisted of a driver seat, a center console, and a passenger seat. Two restraint systems were considered for each surrogate: belt only (BO) and belt plus a generic seat-mounted far-side impact airbag (BB). Surrogates were restrained using a 3-point belt that has a digressive shoulder force load limiter, and retractor, and anchor pretensioners. The far-side airbag used was a 37-liter in volume and has two chambers.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head and Neck Complex Finite Element Model

2023-04-11
2023-01-0557
The National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) Anthropomorphic Test Device (ATD) to improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) ATD. The improvements of the LODC over the HIII-10C include changes in sub-assemblies such as the head and neck, where the LODC head is a redesigned HIII-10C head with pediatric mass properties and the neck has a modified atlanto-occipital joint to replicate observations made from human specimens. The current study focuses on developing a dynamic, nonlinear finite element (FE) model of the LODC ATD head and neck complex. The FE mesh is generated using HyperMesh based on the three-dimensional CAD model. The material data, contact definitions and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The initial and boundary conditions are defined to replicate the neck flexion experimental tests.
Journal Article

Exploration of Vehicle Body Countermeasures Subjected to High Energy Loading

2023-04-11
2023-01-0003
Enhanced protection against high speed crashes requires more aggressive passive safety countermeasures as compared to what are provided in vehicle structures today. Apart from such collision-related scenarios, high energy explosions, accidentally caused or otherwise, require superior energy-absorbing capability of vehicle body subsystems. A case in point is a passenger vehicle subjected to an underbody blast emanating shock wave energy of military standards. In the current study, assessment of the behavior of a “hollow” countermeasure in the form of a depressed steel false floor panel attached with spot-welds along flanges to a typical predominantly flat floor panel of a car is initially carried out with an explicit LS-DYNA solver. This is followed up with the evaluation of PU (polyurethane) foam-filled and liquid-filled false floor countermeasures. In all cases, a charge is detonated under the false floor subjecting it to a high-energy shock pressure loading.
X