Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Light detection and ranging (LIDAR) sensing, a sensing method that detects objects and maps their distances, is seeing rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve. This course will provide the foundation to build LIDAR technologies in automotive applications.
This course is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric motors while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.
Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
How are batteries used in the mobility industry? This three-week hybrid course introduces how batteries fit into the energy context and provides the fundamental knowledge and state-of-the-art insights into battery technologies. It will cover the key role of batteries as a tool for energy storage, the main components and parameters that characterize a battery, and the electrochemical phenomena that lie behind battery operation.
This 4-week virtual-only experience is conducted by leading experts in the autonomous vehicle industry and academia. You’ll develop an understanding of the fundamentals of AV architecture, including mechatronics, kinematics, and the sense-think-act framework in autonomous systems. The course builds a connection for how robotics are used in autonomous vehicles and provides you with demonstrations, procedures, and the skills necessary to program a robot with basic commands using the Robot Operating System (ROS).