Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Technical Paper

Dynamic Modeling and Simulation of Front Wheel Drive Drag Cars

2005-04-11
2005-01-0421
This paper discusses the development of several models and accompanying results for the simulation of the longitudinal and vertical dynamics of a front wheel drive drag car. Models developed include provisions for wheelie bar, chassis flexibility, and anti-squat geometry. The simulation computes quarter-mile times and speeds for various combinations of input parameters. It allows for the analysis of the various factors that affect steady state axle loads and dynamic load transfer, their effects on traction, and the resulting quarter-mile times. Results of case studies examine specific vehicle components and parameters and their effects on performance. These include the wheelie bar, wheel rates, anti-squat properties, and chassis flexibility.
Technical Paper

Lap Time Simulation of Stock Cars on Super Speedways with Random Wind Gusts

2004-11-30
2004-01-3509
This paper describes the development of a simplified model and simulation of a stock car subjected to both steady and random winds on a super speedway. Results indicate how lap times are affected by design and operational parameters and by winds. The simulation models a super speedway such as Talladega or Daytona. Inputs to the simulation include wind speed, wind direction, speed of wind gusts, and the duration and frequency of wind gusts. The program will output both total elapsed time and segregated times per each track section. Also, along with elapsed times, the output will include other characteristics pertaining to the performance of the car that allow the user to obtain a basic understanding of the general performance of the car. This paper will show how the car was modeled. Results for both head winds and crosswinds are shown.
Technical Paper

An Investigation into the Effects of Suspension Tuning on the Cornering of a Winston Cup Race Car

2000-11-13
2000-01-3569
Many of the suspension adjustments that are made to improve the handling of asymmetric cars racing on banked oval tracks are not intuitively obvious to the engineer who is used to thinking of symmetric cars on relatively flat roads. This paper investigates the effects of typical suspension adjustments on the steady state handling of a Winston Cup race car. A relatively simple nonlinear car model is combined with a sophisticated tire model to predict steady-state handling on a banked track. The concept of dynamic wedge is explained, and its effects on handling of asymmetric race cars on banked ovals are examined. Results are presented that show the sensitivity of the handling to changes in various suspension characteristics.
Technical Paper

Development of an Expert System for the Analysis of Track Test Data

2000-05-01
2000-01-1628
This paper describes the development of an expert system implemented in MATLAB that can identify various handling characteristics of interest by evaluating racecar track test data. The program quickly scans the data obtained during a track test and helps the race team by pinpointing those parts of the data that indicate oversteer and understeer events. Towards this goal, algorithms utilizing fuzzy logic were developed for the identification of the oversteer and understeer events. The details of these algorithms are given in this paper. The algorithms were successful in identifying these handling characteristics in actual track data. Examples for each of the cases are presented.
Technical Paper

Fidelity of Vehicle Models Using Roll Center Principles

2000-03-06
2000-01-0693
The ‘roll center’ concept has existed in vehicle dynamics for decades. However, its application is not commonly well understood. This paper considers roll center concepts in the modeling of a planar (front view) twin-beam suspension. Two roll center models are developed and compared to a third model, developed from the Lagrangian method without reference to a roll center. In addition to discussion of the equations of motion, analysis includes simulation of a ‘cornering’ maneuver. The effects of tire vertical stiffness, jacking forces, and nonlinear kinematics are investigated. Conclusions are drawn regarding the usefulness and accuracy of the roll center modeling.
Technical Paper

The Effects of Chassis Flexibility on Roll Stiffness of a Winston Cup Race Car

1998-11-16
983051
Predictable handling of a racecar may be achieved by tailoring chassis stiffness so that roll stiffness between sprung and unsprung masses are due almost entirely to the suspension. In this work, the effects of overall chassis flexibility on roll stiffness and wheel camber response, will be determined using a finite element model (FEM) of a Winston Cup racecar chassis and suspension. The FEM of the chassis/suspension is built from an assembly of beam and shell elements using geometry measured from a typical Winston cup race configuration. Care has been taken to model internal constraints between degrees-of-freedom (DOF) at suspension to chassis connections, e.g. t ball and pin joints and internal releases. To validate the model, the change in wheel loads due to an applied jacking force that rolls the chassis agrees closely with measured data.
Technical Paper

The Effects of Local Spring Perch Flexibility on Suspension Geometry of a Winston Cup Race Car

1998-11-16
983032
In order to achieve predictable handling of a race car, local mounts connecting suspension components to the chassis should be sufficiently rigid to minimize unwanted local deflection which may adversely affect suspension geometry. In this work, the effects of local chassis flexibility of the spring perch on roll stiffness, tire camber change, and steer angle change are determined from a finite element model (FEM) of a Winston Cup race car. Details such as side gussets, supporting brackets, and local curvature of the frame rail spring pocket are included in a shell model of the spring perch. The local shell model of the spring perch is integrated with the global finite element stiffness model of the chassis and suspension consisting of an assembly of beam and shell elements. A parametric study on the effects of thickness changes for seven different areas of the spring perch has been performed.
Technical Paper

Design of a Twist Fixture to Measure the Torsional Stiffness of a Winston Cup Chassis

1998-11-16
983054
The torsional stiffness of a vehicle's chassis significantly affects its handling characteristics and is therefore an important parameter to measure. In this work a new twist fixture apparatus designed to measure the torsional stiffness of a Winston Cup series race car chassis is described. The twist fixture is relatively light weight, adjustable, and easily transportable by one person for quick set-up on different chassis. Measured values of torsional stiffness are reported for several different chassis. The fixture applies vertical displacements (using linear, jack-screw actuators) at the front spring perches of the chassis while holding the rear perches fixed. Conventional race car scales located under the front assembly measure the resulting reaction forces due to the displacements. Dial indicators are placed at selected locations along the chassis to measure deflections.
Technical Paper

Design of a Winston Cup Chassis for Torsional Stiffness

1998-11-16
983053
Race teams are interested in understanding the influence of the various structural members on the torsional stiffness of a NASCAR Winston Cup race car chassis. In this work we identify the sensitivity of individual structural members on the torsional stiffness of a baseline chassis. A high sensitivity value indicates a strong influence on the torsional stiffness of the overall chassis. Results from the sensitivity analysis are used as a guide to modify the baseline chassis with the goal of increased torsional stiffness with minimum increase in weight and low center-of-gravity placement. The torsional stiffness of the chassis with various combinations of added members in the front clip area, engine bay, roof area, front window and the area behind the roll cage was predicted using finite element analysis. Torsional stiffness increases and weight from several competing chassis designs are reported.
Technical Paper

An Investigation of the Effects of Roll Control on Handling and Stability of Passenger Vehicles During Severe Lane Change Maneuvers

1995-02-01
950305
The control of body roll on passenger vehicles can be used as a tool for controlling the “weight shift” that occurs during maneuvering. Distribution of load to the tires will determine the ability of each tire to generate lateral forces required for the maneuver and thus will significantly affect handling. In this investigation, the effects on weight shift and hence, on handling, of total roll stiffness, front to rear roll stiffness distribution, total roll damping, and roll damping distribution were examined. These results were then used to guide the development and analysis of several roll control algorithms. The results of the investigation indicate that roll control can be effective in improving handling and stability. However, simulation of the control algorithms showed that the controllers must be specifically tuned for the vehicle in which they are to be used.
Technical Paper

Simulation and Analysis of Suspension and Aerodynamic Interactions of Race Cars

1994-12-01
942537
Track testing of race cars is expensive and racing series typically limit the amount of testing that can be done on circuit tracks. Because of this, we saw the need to develop a computer model that could simulate a car on a track with any specified surface roughness and with aerodynamic loading acting on the vehicle. This model allows an analysis of the effect of aerodynamic loading on the vertical dynamic response of the vehicle. Vehicle parameters specific to an IMSA GTP car including aerodynamic data from wind tunnel testing and nonlinear shock characteristics were used in this study. Simulations were run for various speeds and ride height configurations and it was found that very small changes in the static settings of the front and rear ride heights can lead to large differences in the resulting ride heights at speed. This can be attributed to the variations in the nonlinear aerodynamic loading as the ride height and speed of the vehicle change.
Technical Paper

The Effects of Roll Control for Passenger Cars during Emergency Maneuvers

1994-03-01
940224
A nonlinear eight degree of freedom vehicle model has been used to examine the effects of roll stiffness on handling and performance. In addition, various control strategies have been devised which vary the total roll couple distribution in order to improve cornering capability and stopping distance. Of all cases tested, a controller which varies the total roll stiffness based on roll angle feedback, and continuously updates the roll couple distribution as a function of steering wheel angle, braking input, and the total roll stiffness, yields the greatest improvements in collision avoidance.
Technical Paper

Simulation and Evaluation of Semi-Active Suspensions

1994-03-01
940864
A simulation of the vertical response of a nonlinear 1/4 car model consisting of a sprung and an unsprung mass was developed. It is being used for preliminary evaluation of various suspension configurations and control algorithms. Nonlinearities include hysteretic shock damping and switchable damping characteristics. Road inputs include discrete events such as bumps and potholes as well as randomly irregular roads having specified power spectral densities (PSDs). Fast Fourier transform data analysis procedures are used to process data from the simulation to obtain PSDs, rms values, and histograms of various response quantities. To aid in assessing ride comfort, the 1/3 octave band rms acceleration of the sprung mass is calculated and compared with specifications suggested by the International Standards Organization (ISO). Cross plots of the rms values of acceleration, suspension travel, and the force of the road on the tire are used to compare the performance of various suspensions.
X