Refine Your Search

Topic

Search Results

Technical Paper

Virtual Sensors in Small Engines – Previous Successes and Promising Future Use Cases

2023-10-24
2023-01-1837
Virtual sensing, i.e., the method of estimating quantities of interest indirectly via measurements of other quantities, has received a lot of attention in various fields: Virtual sensors have successfully been deployed in intelligent building systems, the process industry, water quality control, and combustion process monitoring. In most of these scenarios, measuring the quantities of interest is either impossible or difficult, or requires extensive modifications of the equipment under consideration – which in turn is associated with additional costs. At the same time, comprehensive data about equipment operation is collected by ever increasing deployment of inexpensive sensors that measure easily accessible quantities. Using this data to infer values of quantities which themselves are impossible to measure – i.e., virtual sensing – enables monitoring and control applications that would not be possible otherwise.
Technical Paper

Exhaust Aftertreatment Technologies for PN Reduction of Motorcycles

2023-10-24
2023-01-1846
The objective of this experimental investigation was to analyze the effect of various exhaust gas aftertreatment technologies on particulate number emissions (PN) of an MPFI EU5 motorcycle. Specifically, three different aftertreatment strategies were compared, including a three-way-catalyst (TWC) with LS structure as the baseline, a hybrid catalyst with a wire mesh filter, and an optimized gasoline particulate filter (GPF) with three-way catalytic coating. Experimental investigations using the standard test cycle WMTC performed on a two-wheeler chassis dynamometer, while the inhouse particulate sampling system was utilized to gather information about size-dependent filtering efficiency, storage, and combustion of nanoparticles. The particulate sampling and measuring system consist of three condensation particle counters (CPCs) calibrated to three different size classes (SPN4, SPN10, SPN23).
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Technical Paper

Lifecycle Carbon Footprint Calculation of Hand-Held Tool Propulsion Concepts

2023-04-11
2023-01-0553
Following the recent trend in the automotive industry, hybrid and pure electric powertrain systems are more and more preferred over conventional combustion powertrain systems due to their significant potential to reduce greenhouse-gas emissions. Although electric powertrains do not produce direct emissions during their operational time, the indirect emissions over their whole life cycle have to be taken into consideration. In this direction, the carbon footprint due to the electrification of the hand-held power tool industry needs to be examined in the preliminary design phase. In this paper, after defining the carbon footprint calculation framework, assumptions and simplifications used for the calculations, a direct comparison of the total carbon dioxide equivalent (CO2eq) emissions of three equivalent power and range powertrain systems - a combustion-driven, a hybrid-driven, and a cordless electric-driven - is presented.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Journal Article

Investigation on transient behavior and SoC balancing of a hybrid powertrain hand-held tool

2022-01-09
2022-32-0025
A transient behavior investigation of a hybrid hand-held tool is carried out on near real load conditions, through a hybrid experimental and simulative study. As this study focuses on handheld tools with a varied or transient load operation like chainsaws and brush cutters, a use of a blower tool as a test-carrier and a throttle body implementation on its blower air pipe adds a controllable braking mechanism. This allows for driving varied load cycles without the need of a testbench. Experimental investigation takes place at both start-up, shut-down and load conditions and for different drive control and commutation modes of electric motor. The controller characterization and parameter selection are done. After the load cycles are driven on the test-carrier, the characterizing data are transferred to the MATLAB and Simulink simulation model to correct and calibrate its transient behavior.
Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Technical Paper

Artificial Neural Network Based Predictive Real Drive Emission and Fuel Economy Simulation of Motorcycles

2018-10-30
2018-32-0030
As the number of different engine and vehicle concepts for powered-two wheelers is very high and will even rise with hybridization, the simulation of emissions and fuel consumption is indispensable for further development towards more environmentally friendly mobility. In this work, an adaptive artificial neural network based predictive model for emission and fuel consumption simulation of motorcycles operated in real world conditions is presented. The model is developed in Matlab and Simulink and is integrated into a longitudinal vehicle dynamic simulation whereby it is possible to simulate various and not yet measured test cycles. Subsequently, it is possible to predict real drive emissions RDE and on-road fuel consumption by a minimum of previous measurement effort.
Technical Paper

Ion Current Comparison in Small, Fast Running Gasoline Engines for Non-Automotive Applications

2018-10-30
2018-32-0077
Small engines for non-automotive applications include 2-stroke and 4-stroke gasoline engine concepts which have a reduced number of sensors due to cost and packaging constraints. In order to cope with future emission regulations, more sophisticated engine control and monitoring becomes mandatory. Therefore, a cost-effective way has to be found to gain maximum information from the existing sensors and actuators. Due to an increasing bio-fuel share in the market, the detection of bio-fuel content is necessary to guarantee a stable combustion by adapting the injection and ignition control strategy. Meaningful information about the combustion can be retrieved from combustion chamber ion current measurements. This paper proposes a general overview of combustion process monitoring in different engine concepts by measuring the ion current during combustion.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Journal Article

Evaporation and Cold Start Behavior of Bio-Fuels in Non-Automotive Applications

2016-11-08
2016-32-0034
Worldwide increasing energy consumption, decreasing energy resources and continuous restriction of emission legislation cause a rethinking in the development of internal combustion engines and fuels. Alternative renewable fuels, so called bio-fuels, have the potential to contribute to environmentally friendly propulsion systems. This study concentrates on the usage of alcohol fuels like ethanol, methanol and butanol in non-automotive high power engines, handheld power tools and garden equipment with the focus on mixture formation and cold start capability. Although bio-fuels have been investigated intensely for the use in automotive applications yet, the different propulsion systems and operation scenarios of nonautomotive applications raise the need for specific research. A zero dimensional vaporization model has been set up to calculate the connections between physical properties and mixture formation.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Technical Paper

Experimental Investigations Regarding the Potential of an Electronic Ignition Timing Control for a Lawn Mower Engine

2016-11-08
2016-32-0083
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which is even provided by the simplest engine setup, is some form of the crankshaft speed since it is essential for the functionality of the engine.
Technical Paper

Analysis of Conventional Motorcycles with the Focus on Hybridization

2016-11-08
2016-32-0031
The release of the “Regulation No. 168/2013” for the approval and market surveillance of two- or three-wheel motorcycles and quadricycles of the European Union started a new challenge for the motorcycle industry. One goal of the European Union is to achieve emission parity between passenger cars (EURO 6) and motorcycles (EURO 5) in 2020. The hybridization of motorcycle powertrains is one way to achieve these strict legislation limits. In the automotive sector, hybridization is well investigated and has already shown improvements of fuel consumption, efficiency and emission behavior. Equally, motorcycle applications have a high potential to improve efficiency and to meet customer needs as fun to drive as well. This paper describes a methodical approach to analyze conventional motorcycles regarding the energy and power demand for different driving cycles and driving conditions. Therefore, a dynamic or forward vehicle simulation within MATLAB Simulink is used.
Technical Paper

Assessment of Minimum Fuel Consumption Operation Strategy for Hybrid Powersport Drive-Trains by Means of Dynamic Programming Method

2016-11-08
2016-32-0015
The hybrid-electric drivetrain permits a multitude of new control strategies like brake energy recuperation, engine start-stop operation, shifting of engine working point, as well as in some situations pure electric driving. Overall this typically allows a reduction of fuel consumption and therefore of carbon dioxide emissions. During the development process of the vehicle various drivetrain configurations have to be considered and compared. This includes decisions regarding the topology - like the position of the electrical machine in the drivetrain (e.g. at the gearbox input or output shaft), as well as the selection of the needed components based on their parameters (nominal power, energy content of the battery, efficiency etc.). To compare the chosen variants, typically the calculated fuel consumption for a given driving cycle is used.
Technical Paper

Expansion to Higher Efficiency - Experimental Investigations of the Atkinson Cycle in Small Combustion Engines

2015-11-17
2015-32-0809
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson cycle, realized over the crank drive, has attracted increasing attention. Several OEMs have been doing investigations on this efficiency-increasing principle with in the whole range from small engines up to automotive ones. In previous publications, the authors stated that an indicated efficiency of up to 48% could be reached with an Atkinson cycle-based engine. However, these studies are based on 1D-CFD simulation. To verify the promising simulation results, a prototype engine, based on the Atkinson principle, was designed and experimentally tested. The aim of the present study is to evaluate and validate the (indicated) engine efficiency gained by experimental tests compared to the predicted simulation results. In order to investigate part load behavior, several valve timing strategies were also developed and tested.
Technical Paper

Real World Operation of a Standard Lawn Mower Engine from a Scientific Perspective

2013-10-15
2013-32-9124
This paper introduces a research project on a spark ignition engine used in non-road applications. The aim is to illustrate the present situation as basis for comparison and to identify possible improvement potential in terms of performance, efficiency or exhaust and noise emissions. The study is carried out in two steps. First a standard walk-behind lawn mower is equipped with measuring instrumentation for recording the cutting forces and the engine variables during real world operation. The tests are carried out on three different lawn types and two different blade types are investigated. Consequently, in a second step the engine is analysed on the engine test bench in stationary and transient operating mode. A complete engine mapping is done regarding all relevant variables. Additionally to the outdoor tests, fuel consumption and engine out emissions are measured on the engine dynamometer. The recorded data enables a detailed analysis of the engine behaviour.
Technical Paper

Fundamental Investigations on the Boost Pressure Control System of Charged Aircraft Engines in the Aviation Class ELA1 / Approved Systems Versus New Solutions

2012-10-23
2012-32-0048
Aircraft engines in the (ELA1) category, with a maximum power of up to 100kW, are characterized by a verified state of the art technology. New developments of engine technologies and control methods are very slowly being introduced into this engine segment. This trend is based on the fact that new technologies implemented in aircraft engines must be thoroughly certified and validated in a very complex and documented procedure. For this reason, most of the engines in this class are equipped with a carburetor as an air/fuel mixture preparation system. Moreover, naturally aspirated spark ignited engines are widely used in the aircraft category, with a take-off weight of up to 1000kg.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
X