Refine Your Search




Search Results

Technical Paper

Heat Transfer Analysis of an Electric Motor Cooled by a Large Number of Oil Sprays Using Computational Fluid Dynamics

This paper reports on an analytical study of the heat transfer and fluid flow in an electric vehicle e-Motor cooled by twenty five sprays/jets of oil. A three-dimensional, steady state, multi-phase, computational fluid dynamics (CFD) and conjugate heat transfer (CHT) model was created using a commercial CFD software. The transport equations of mass, momentum, energy and volume fraction were solved together with models for turbulence and wall treatment. An explicit formulation of the volume of fluid (VOF) technique was used to simulate the sprays, a time-implicit formulation was used for the flow-field and three dimensional conduction heat transfer with non-isotropic thermal conductivities was used to simulate the heat transfer in the windings.
Technical Paper

Multiphysics approach for thermal design of liquid cooled EV battery pack

Thermal management of battery packs is essential to keep the cell temperatures within safe operating limits at all times and, hence, ensure the healthy functioning of an EV. The life cycle of a cell is largely influenced by its operating temperature, maintaining the cell temperature in its optimum range improves its longevity by decreasing its capacity fade rate and in turn extending the life of an EV. Liquid cooling techniques have proven to be cost-effective compared to other techniques such as air cooling, PCM-based in terms of performance in the given volumetric constraints. The battery thermal management solution being presented employs a tabbed type liquid cooling technology that achieves low-temperature differentials for an in-house designed battery pack consisting of 320 LFP cells (Size: 32700) with a total voltage and capacity of 27V and 240Ah respectively. Thermal design of the battery pack considers maximum dissipation when continuously operating at 1C-rate conditions.
Technical Paper

1D-3D Coupled Analysis for Motor Thermal Management in an Electric Vehicle

Motor thermal management of electric vehicles (EVs) is becoming more significant due to its close relations to vehicle aerodynamic performance and energy consumption, while computer aided engineering (CAE) plays an important role in its development. A 1D-3D coupled model is established to characterize transient thermal performance of the motor in an electric vehicle on a high performance computer (HPC) platform. The 1D motor thermal management model is integrated with the 1D powertrain model, and a 3D thermal model is established for the motor, while online data exchange is realized between the 1D and 3D models. The 1D model gives boundaries such as inlet coolant temperature, mass flowrate and motor heat generation to the 3D model, while 3D gives back boundaries such as heat transfer to coolant simultaneously. Transient simulations are performed for the 140kph(20℃) driving cycle, and the model is calibrated with experimental data.