Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Deep Learning-Based Queue-Aware Eco-Approach and Departure System for Plug-In Hybrid Electric Buses at Signalized Intersections: A Simulation Study

2020-04-14
2020-01-0584
Eco-Approach and Departure (EAD) has been considered as a promising eco-driving strategy for vehicles traveling in an urban environment, where information such as signal phase and timing (SPaT) and geometric intersection description is well utilized to guide vehicles passing through intersections in the most energy-efficient manner. Previous studies formulated the optimal trajectory planning problem as finding the shortest path on a graphical model. While this method is effective in terms of energy saving, its computation efficiency can be further enhanced by adopting machine learning techniques. In this paper, we propose an innovative deep learning-based queue-aware eco-approach and departure (DLQ-EAD) system for a plug-in hybrid electric bus (PHEB), which is able to provide an online optimal trajectory for the vehicle considering both the downstream traffic condition (i.e. traffic lights, queues) and the vehicle powertrain efficiency.
Technical Paper

Engine-Aftertreatment in Closed-Loop Modeling for Heavy Duty Truck Emissions Control

2019-04-02
2019-01-0986
An engine-aftertreatment computational model was developed to support in-loop performance simulations of tailpipe emissions and fuel consumption associated with a range of heavy-duty (HD) truck drive cycles. For purposes of this study, the engine-out exhaust dynamics were simulated with a combination of steady-state engine maps and dynamic correction factors that accounted for recent engine operating history. The engine correction factors were approximated as dynamic first-order lags associated with the thermal inertia of the major engine components and the rate at which engine-out exhaust temperature and composition vary as combustion heat is absorbed or lost to the surroundings. The aftertreatment model included catalytic monolith components for diesel exhaust oxidation, particulate filtration, and selective catalytic reduction of nitrogen oxides (NOx) with urea.
Journal Article

Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

2013-04-08
2013-01-1033
We compare the simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional heavy duty (HD) truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential benefit for HD hybrid vehicles during highway driving.
X