Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions

2011-08-30
2011-01-2130
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
Technical Paper

Systematic Formulation of Efficient and Durable Axle Lubricants for Light Trucks and Sport Utility Vehicles

2004-10-25
2004-01-3030
Consumer demand for size, weight and horsepower has dictated a prominent role for sport utility vehicles and light trucks in the product lines of major North American automobile manufacturers. Inherently less efficient than passenger cars, these vehicles will be facing more stringent light duty CAFE (Corporate Average Fuel Economy) standards beginning in 2005 when mileage targets will be elevated to 21 mpg; this figure will be further increased to 22.2 mpg by 2007. In order to accommodate both public demand and CAFE requirements, vehicle manufacturers are seeking ways to improve fuel economy through design and material modifications as well as through improvements in lubrication. The axle lubricant may have an important impact on fuel economy, and axle lubricants can be tailored to deliver higher levels of operating efficiency over a wide range of conditions.
Technical Paper

An Extended 35VQ-25 Vane Pump Test as a Viable Method for Differentiating Anti-Wear Hydraulic Fluid Performance

2002-03-19
2002-01-1403
This paper describes the development of an extended vane pump test procedure utilizing the Eaton® 35VQ-25 vane pump. Evaluation of two commercial Zinc Dithiophosphate containing and two commercial non Zinc (ashless) hydraulic fluids are also described. Results show that extending the test time allows differentiation among fluids which give comparable performance in the standard 50 hour test. System cleanliness, as well as pump weight loss, must be used in the performance assessment.
Technical Paper

Extending Injector Life in Methanol-Fueled DDC Engines Through Engine Oil and Fuel Additives

1990-10-01
902227
Considerable development effort has shown that conventional diesel engine lubricating oil specifications do not define the needs for acceptable injector life in methanol-fueled, two-stroke cycle diesel engines. A cooperative program was undertaken to formulate an engine oil-fuel additive system which was aimed at improving performance with methanol fueling. The performance feature of greatest concern was injector tip plugging. A Taguchi matrix using a 100 hour engine test was designed around an engine oil formulation which had performed well in a 500 hour engine test using a simulated urban bus cycle. Parameters investigated included: detergent level and type, dispersant choice, and zinc dithiophosphate level. In addition, the influence of a supplemental fuel additive was assessed. Analysis of the Taguchi Matrix data shows the fuel additive to have the most dramatic beneficial influence on maintaining injector performance.
X