Refine Your Search

Topic

Search Results

Viewing 1 to 6 of 6
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Technical Paper

Performance of DSRC V2V Communication Networks in an Autonomous Semi-Truck Platoon Application

2021-04-06
2021-01-0156
Autonomy for multiple trucks to drive in a fixed-headway platoon formation is achieved by adding precision GPS and V2V communications to a conventional adaptive cruise control (ACC) system. The performance of the Cooperative ACC (CACC) system depends heavily on the reliability of the underlying V2V communications network. Using data recorded on precision-instrumented trucks at both ACM and NCAT test tracks, we provide an understanding of various effects on V2V network performance: Occlusions - non-line-of-sight (NLOS) between the Tx and Rx antenna may cause network signal loss. Rain - water droplets in the air may cause network signal degradation. Antenna position - antennas at higher elevation may have less ground clutter to deal with. RF interference - interference may cause network packet loss. GPS outage - outages caused by tree cover, tunnels, etc. may result in degraded performance. Road curvature - curves may affect antenna diversity.
Technical Paper

Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety

2015-09-29
2015-01-2868
This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
Technical Paper

Comparison of Verity and Volvo Methods for Fatigue Life Assessment of Welded Structures

2013-09-24
2013-01-2357
Great efforts have been made to develop the ability to accurately and quickly predict the durability and reliability of vehicles in the early development stage, especially for welded joints, which are usually the weakest locations in a vehicle system. A reliable and validated life assessment method is needed to accurately predict how and where a welded part fails, while iterative testing is expensive and time consuming. Recently, structural stress methods based on nodal force/moment are becoming widely accepted in fatigue life assessment of welded structures. There are several variants of structural stress approaches available and two of the most popular methods being used in automotive industry are the Volvo method and the Verity method. Both methods are available in commercial software and some concepts and procedures related the nodal force/moment have already been included in several engineering codes.
Technical Paper

Plant Identification and Design of Optimal Clutch Engagement Controller

2006-10-31
2006-01-3539
Automated clutches for vehicle startup is being increasingly deployed in commercial trucks for benefits, which include driver comfort, gradient performance, improved clutch life, emissions and driveline vibration reduction potential. The process of designing the controller is divided into 2 parts. Firstly, the parameter estimation of previously developed driveline models is carried out. The procedure involves an off-line minimization technique based on measured and estimated speeds. Secondly, the nominal plant model is used to develop LQR based optimal control strategy, which takes into account the slip time, dissipated power and slip acceleration. Mathematical expression of the performance index is clearly developed. A variety of clutch lock up profiles can be incorporated by changing a single tuning parameter, thus providing the driver the ability to select a launch profile based on specific driving objectives.
Technical Paper

Modal Content of Heavy-Duty Diesel Engine Block Vibration

1997-05-20
971948
High-fidelity overall vehicle simulations require efficient computational routines for the various vehicle subsystems. Typically, these simulations blend theoretical dynamic system models with empirical results to produce computer models which execute efficiently. Provided that the internal combustion engine is a dominant source of vehicle vibration, knowledge of its dynamic characteristics throughout its operating envelope is essential to effectively predict vehicle response. The present experimental study was undertaken to determine the rigid body modal content of engine block vibration of a modern, heavy-duty Diesel engine. Experiments were conducted on an in-line six-cylinder Diesel engine (nominally rated at 470 BHP) which is used in both commercial Class-VIII trucks, and on/off-road military applications. The engine was mounted on multi-axis force transducers in a dynamometer test cell in the standard three-point configuration.
X