Refine Your Search

Topic

Search Results

Technical Paper

Research on Overload Dynamic Identification Based on Vehicle Vertical Characteristics

2023-04-11
2023-01-0773
With the development of highway transportation and automobile industry technology, highway truck overload phenomenon occurs frequently, which poses a danger to road safety and personnel life safety. So it is very important to identify the overload phenomenon. Traditionally, static detection is adopted for overload identification, which has low efficiency. Aiming at this phenomenon, a dynamic overload identification method is proposed. Firstly, the coupled road excitation model of vehicle speed and speed bump is established, and then the 4-DOF vehicle model of half car is established. At the same time, considering that the double input vibration of the front and rear wheels will be coupled when vehicle passes through the speed bump, the model is decoupled. Then, the vertical trajectory of the body in the front axle position is obtained by Carsim software simulation.
Technical Paper

Research on Garbage Recognition of Intelligent Sweeper Vehicle Based on Improved PSPNet Algorithm

2022-03-29
2022-01-0220
The sweeper vehicle plays a very key role in maintaining the urban environment. If the sweeper vehicle can accurately and efficiently identify and classify the ground garbage in the working process, it can greatly improve the working efficiency of the sweeper vehicle and reduce the consumption of manpower. Although the deep learning algorithm based on DUC and PSPNet has high accuracy, the recognition speed is low. ENet is a lightweight network, which greatly improves efficiency, but significantly sacrifices accuracy. This paper presents an improved real-time detection lightweight network based on PSPNet, which takes into account the operation speed and accuracy. The network takes PSPNet as the backbone network, and increases the stride in the convolution process, to reduce the size of the feature map and reduce the amount of calculation.
Technical Paper

Research on Dust Suppression of Dump Truck

2022-03-29
2022-01-0786
When dump trucks unload dusty materials, dust particles with a diameter of 1 to 75 microns slide out of the dump body and float into the air. Dust particles naturally settle down spending a few hours, which causes air pollution. People who work in this environment daily suffer serious physical harm. To study the movement of dust particles during the unloading process, a scaled-down model is used to simulate the process of dump truck unloading gravel, and a high frame rate camera is used to record the movement trajectory of dust particles during the unloading process. In this paper, by observing the movement process of unloading dust particles by dump trucks, based on the principle of dynamics, a mathematical model describing the unloading of dust particles in the dump body and a mathematical model of the diffusion of dust particles in the air are established. Take the small gravel sampled at the construction site as an example of the experiment.
Technical Paper

Design and Simulation of Active Anti-Rollover Control System for Heavy Trucks

2022-03-29
2022-01-0909
With the rapid development of the logistics and transportation industry, heavy-duty trucks play an increasingly important role in social life. However, due to the characteristics of large cargo loads, high center of mass and relatively narrow wheelbase, the driving stability of heavy trucks are poor, and it is easy to cause rollover accidents under high-speed driving conditions, large angle steering and emergency obstacle avoidance. To improve the roll stability of heavy trucks, it is necessary to design an active anti-rollover control system, through the analysis of the yaw rate and the load transfer rate of the vehicle, driving states can be estimated during the driving process. Under the intervention of the control system, the lateral transfer rate of heavy trucks can be reduced to correct the driving posture of the vehicle body and reduce the possibility of rollover accidents.
Technical Paper

Safety Speed Warning System for Tank Truck against Rollover

2021-04-06
2021-01-0978
The tank truck has a wide range of application. When the liquid in the tank is not fully loaded, the lateral movement of the liquid in the tank will shift the center of gravity of the tank truck and make the vehicle less safe. It is easy to roll over when the tank truck is turning. This study combines the vehicle dynamic characteristics and geographic information, which gives the driver safe speed and safe braking distance tips before turning, to reduce the traffic accidents caused by driver's misjudgment. The dynamic model of the tank truck is established, through collecting the real-time information of the vehicle, the vehicle load and braking torque are calculated by the relevant dynamic model. The system needs to measure the deviation of the center of gravity in the tank truck movement process, and the deviation of the center of gravity has a great influence on the safety speed.
Technical Paper

Research on Parallel Regenerative Braking Control of the Electric Commercial Vehicle Based on Fuzzy Logic

2021-04-06
2021-01-0119
Regenerative braking is an effective technology to extend the driving range of electrified vehicles by recovering kinetic energy from braking. This paper focuses on the design of the regenerative braking control strategy for a commercial vehicle which requires significantly larger braking power than passenger cars. To maximize the energy recovery while ensuring the braking efficiency of the vehicle and its braking safety, this paper proposed a fuzzy logic strategy for regenerative braking control, and a feasibility study was conducted for an electric van. The work includes in three steps. Firstly, state variables that significantly affect regenerative braking performance, i.e., vehicle speed, battery State-of-Charge (SOC), and braking intensity, are identified based on mathematical modelling of the vehicle system dynamics in braking maneuver.
Technical Paper

Real-time and Accurate Estimation of Road Slope for Intelligent Speed Planning System of Commercial Vehicle

2020-04-14
2020-01-0115
In the intelligent speed planning system, real-time estimation of road slope is the key to calculate slope resistance and realize the vehicles’ active safety control. However, if the road slope is measured by the sensor while the commercial vehicle is driving, the vibration of the vehicle body will affect its measurement accuracy. Therefore, the relevant algorithm is used to estimate the real-time slope of the road when the commercial vehicle is driving. At present, many domestic and foreign scholars have analyzed and tested the estimation of road slope by the least square method or Kalman filter algorithm. Although the two methods both can achieve the estimation, the real-time performance and accuracy still need to be improved. In this paper, for traditional fuel commercial vehicle, the Kalman filter algorithm based on the kinematics and the extended Kalman filter algorithm based on the longitudinal dynamics are respectively used to estimate the road slope.
Technical Paper

Kalman Filter Slope Measurement Method Based on Improved Genetic Algorithm-Back Propagation

2020-04-14
2020-01-0897
How to improve the measurement accuracy of road gradient is the key content of the research on the speed warning of commercial vehicles in mountainous roads. The large error of the measurement causes a significant effect of the vehicle speed threshold, which causes a risk to the vehicle's safety. Conventional measuring instruments such as accelerometers and gyroscopes generally have noise fluctuation interference or time accumulation error, resulting in large measurement errors. To solve this problem, the Kalman filter method is used to reduce the interference of unwanted signals, thereby improving the accuracy of the slope measurement. However, the Kalman filtering method is limited by the estimation error of various parameters, and the filtering effect is difficult to meet the project research requirements.
Technical Paper

A Pre-Warning Method for Cornering Speed of Concrete Mixer Truck

2020-04-14
2020-01-1003
The high gravity center of the concrete mixer truck reduces the truck’s stability while steering. The rolling stirring tank makes the stability even worse than the regular engineering vehicle due to the dynamic variation of the centroid position. Most of the researches on the rollover stability of concrete mixer trucks focus on the rollover model establishment and dynamic simulation module. The change of concrete centroid is ignored when the safety cornering speed is calculated. This paper proposes a pre-warning method for the cornering speed of concrete mixer trucks based on centroid dynamic simulation. In the method, the mixing tank stirring model and the vehicle driving dynamic model are established on the Fluent and TruckSim simulation platforms, respectively. The theoretical speed threshold obtained by simulation is used as the evaluation index of the warning speed in the curve. Firstly, the dynamic simulation of the stirring tank model is carried out by Fluent.
Technical Paper

Effect of Circumferential Magnetic Field on Braking Performance of a Direct Vane Magnetorheological Fluid Retarder

2019-04-02
2019-01-0342
The hydraulic retarder used in commercial vehicles can provide hydraulic damping to generate braking torque, reducing the pressure of the braking system on the slope section and increasing the safety. In this paper, the magnetorheological fluid with fast magnetic field reflection characteristics is used to increase the response speed of the hydraulic retarder, which can effectively reduce the response time of the hydraulic retarder. In this paper, the influence of the change of circumferential magnetic field on the braking torque of the magnetorheological fluid retarder is studied.
Technical Paper

A Non-Contact Overload Identification Method Based on Vehicle Dynamics

2019-04-02
2019-01-0490
The vehicle overload seriously jeopardizes traffic safety and affects traffic efficiency. At present, the static weighing station and weigh-in-motion station are both relatively fixed, so the detection efficiency is not high and the traffic efficiency is affected; the on-board dynamic weighing equipment is difficult to be popularized because of the problem of being deliberately damaged or not accepted by the purchaser. This paper proposes an efficient, accurate, non-contact vehicle overload identification method which can keep the road unimpeded. The method can detect the vehicle overload by the relative distance (as the characteristic distance) between the dynamic vehicle's marking line and the road surface. First, the dynamics model of the vehicle suspension is set up. Then, the dynamic characteristic distance of the traffic vehicle is detected from the image acquired by the calibrated camera based on computer vision and image recognition technology.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes

2017-09-17
2017-01-2508
Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
Technical Paper

Combined Hill Descent Braking Strategy for Heavy Truck in the Featured-Slope

2017-09-17
2017-01-2535
The continuous braking for the brake drum will cause the brake thermal decay when the heavy truck is driving down the long slope in the mountain areas. It reduces the heavy truck’s braking performance and the braking safety. The engine braking and the hydraulic retarder braking both consume the kinetic energy of the heavy truck and can assist the truck driving in the mountain areas. This research proposes a combined hill descent braking strategy for heavy truck based on the recorded information of the slopes to ensure the braking safety of the heavy truck. The vehicle dynamic model and the brake drum temperature rising model are established to analyze the drum’s temperature variation during the downhill progress of the heavy truck. Then based on the slope information, the combined braking temperature variation is analyzed considering the characteristics of the engine braking, the drum braking and the hydraulic retarder braking.
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

Experimental Study of Hydraulic Retarder Waste Heat Recovery Based on the Organic Rankine Cycle

2016-09-27
2016-01-8079
The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established. Then through theoretical calculations, components' structural parameters of the ORC are determined.
Technical Paper

Driving Path Planning System under Vehicular Active Safety Constraint

2016-09-27
2016-01-8105
Path planning system, which is one of driver assistance systems, can calculate the driving paths and estimate the driving time through the road information provided by information source. Traditional path planning systems calculate the driving paths through Dijsktra's algorithm or A* algorithm but only consider the road information from electronic maps. It is not safe enough for operating vehicles because of the insufficient information of vehicle performance as well as the driver's willingness. This study is based on the Dijsktra's algorithm, which comprehensively considered vehicular active safety constraints such as road information, vehicle performance and the driver's willingness to optimize the Dijsktra's algorithm. Then the path planning system can calculate the optimal driving paths that would satisfy the safety requirement of the vehicle. This study used LabVIEW as a visual host computer and MATLAB to calculate dynamic property of the vehicle.
Technical Paper

Energy Saving Analysis of Vehicle Hydraulic Retarder Thermal Management System Based on Rankine Cycle

2016-09-18
2016-01-1941
Vehicle hydraulic retarders are applied in heavy-duty trucks and buses as an auxiliary braking device. In traditional cooling systems of hydraulic retarders, the working fluid is introduced into the heat exchanger to transfer heat to the cooling liquid in circulation, whose heat is then dissipated by the engine cooling system. This prevents the waste heat of the working fluid from being used effectively. In hydraulic retarder cooling system based on the Organic Rankine Cycle, the organic working fluid first transfers heat with the hydraulic retarder working fluid in Rankine cycle, and then outputs power through expansion machine. It can both reduce heat load of the engine cooling system, and enhance thermal stability of the hydraulic retarder while recovering and utilizing braking energy. First of all, according to the target vehicle model, hydraulic retarder cooling system model based on Rankine cycle is established.
X