Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Research on Integrated Chassis Control Strategy for Four-Wheel Independent Control Electric Vehicle

2014-09-30
2014-01-2290
Four-wheel independent control electric vehicle is a new type of x-by-wire EV with four wheels independent steering and four wheels independent drive/brake systems. In order to take full advantage of the vehicle's performance potential, this paper presents a novel integrated chassis control strategy. In the paper, the strategy is designed by the hierarchical control structure and divided into integrated control layer and allocation layer. By this method, the control logical can be modularized and simplified. In the integrated control layer, Model Prediction Control (MPC) is adopted to design the integrated control unit, which belongs to be a kind of local optimization algorithm with feedback correction features. Using this method could avoid the system performance degradation caused by the control model mismatch. The control allocation layer is to optimally distribute the vehicle control forces to the steering/driving/brake actuators on each wheel.
Technical Paper

Development and Verification of Electronic Braking System ECU Software for Commercial Vehicle

2013-11-27
2013-01-2736
Electronic braking system (EBS) of commercial vehicle is developed from ABS to enhance the brake performance. Based on the early development of controller hardware, this paper starts with an analysis of the definition of EBS. It aims at the software design of electronic control unit, and makes it compiled into the controller in the form of C language by the in-depth study about control strategy of EBS in different braking conditions. Designed controller software is divided into two layers. The upper control strategy includes the recognition algorithm of driver's braking intention, estimation algorithm of the vehicle state, conventional braking strategy which consists of the algorithm of deceleration control and braking force distribution, and emergency braking strategy which consists of the algorithm of brake assist control and ABS control.
X