Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Effect of Circumferential Magnetic Field on Braking Performance of a Direct Vane Magnetorheological Fluid Retarder

2019-04-02
2019-01-0342
The hydraulic retarder used in commercial vehicles can provide hydraulic damping to generate braking torque, reducing the pressure of the braking system on the slope section and increasing the safety. In this paper, the magnetorheological fluid with fast magnetic field reflection characteristics is used to increase the response speed of the hydraulic retarder, which can effectively reduce the response time of the hydraulic retarder. In this paper, the influence of the change of circumferential magnetic field on the braking torque of the magnetorheological fluid retarder is studied.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
Technical Paper

Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

2016-04-05
2016-01-1550
This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
Technical Paper

Simulation based Evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for Off-Highway Vehicles

2015-04-14
2015-01-1494
Nowadays, off-highway vehicles enjoyed a significant status in the national defense and civil construction. There is no doubt that the working conditions of off-highways are quite different from the conventional passenger cars, hence, their suspensions are particularly designed. Since the hydro-pneumatic suspension technology is maturely applied in engineering machinery, this paper presents a concept for a novel energy-harvesting device, which is applied in off-highway vehicles based on hydro-pneumatic suspension, namely, electro-hydraulic energy-harvesting suspension (EHEHS). The EHEHS took the fundamental of mechanism-electronic-hydraulic system, which consisted the following elements: a cylinder, 2 check valves, a hydro-pneumatic spring, a hydraulic motor, a DC motor, a processing circuit and a battery. In the EHEHS system, the cylinder is used to transmit the vibration energy into hydraulic energy, which is stored in hydro-pneumatic spring.
Technical Paper

Vehicle Interconnected Suspension System based on Hydraulic Electromagnetic Energy Harvest: Design, Modeling and Simulation Tests

2014-09-30
2014-01-2299
To integrate the energy-recovery characteristic of the Hydraulic electromagnetic shock absorber (HESA) and the anti-roll characteristic and anti-pitch characteristic of Hydraulic Interconnected Suspension(HIS), a Hydraulic Interconnected Suspension system based on Hydraulic Electromagnetic Shock Absorber (HESA-HIS) is presented. HESA-HIS has three operating modes: energy-recovery priority mode, dynamic performance priority mode and energy-recovery and dynamic performance balance mode. The working principle of HESA-HIS in the three operating modes is introduced, a full vehicle model is built by using the software AMESim, and some simulation tests are conducted by using the vehicle model. The simulation results show that the system can effectively reduce the roll angle of the vehicle, while maintaining good ride performance. Fishhook test results show that the roll angle of the HESA-HIS vehicle is reduced by 80%, compared to the traditional vehicle.
Technical Paper

Analysis of Hydraulic Retarder Air-Friction Characteristics

2014-09-28
2014-01-2504
The retarder is an important auxiliary braking device of heavy vehicles. However, the stirring air in the working wheels of the idle retarder would cause the transmission loss when the vehicle is traveling in non-braking state [1]. For certain driving conditions, the air-friction characteristics in the working wheels of the idle retarder are analyzed first. Then the relationship between the air density and the torque produced by stirring air is studied. The thermal characteristics of the retarder in the idle condition are also concerned according to the energy flow and heat transfer. Meanwhile, the increased transmission loss caused by the rising temperature of the stirring air and its inference on the transmission stability are also studied. Finally, the optimal range of air vacuum degrees in the working wheel of the idle retarder is determined and the evaluations for the air-friction and the heat transfer characteristics are given for the vacuum degrees.
Technical Paper

Vehicle Braking System Calculation and Simulation Software Platform

2012-09-24
2012-01-1895
The brake performance is one of the most important performances in the automotive active safety, and it is the main measure of automotive active safety. Thus, to develop a platform for the braking system is quite significant. Based on the object-oriented technology, the platform for braking system is developed by making use of Visual C++ 6.0 development tool. By using the VC++ development tool and doing secondary development on other softwares, the software possesses powerful features, such as brake plan selection, performance calculation, parametric modeling, finite element analysis and kinematics simulation, etc. An initial brake system can be designed, calculated and analyzed all in one. The living instance shows that the platform has friendly user interfaces, powerful functions and it can improve the precision and efficiency of brake design. The platform has been of great applied value and can also positively promote the design automation of vehicle's braking system.
Technical Paper

Energy Dissipation and Recovery of Vehicle Shock Absorbers

2012-09-24
2012-01-2037
This paper presented a brief derivation of the energy dissipation by vehicle shock absorbers. Analysis between energy dissipation and damping coefficient, the road displacement power spectral density, the vehicle speed and the tire stiffness was carried out. Then an energy recovery scheme was put forward, and the bench test proved that the energy harvest scheme is feasible. In the end, this paper provided detailed derivation of the characteristics of the hydraulic electromagnetic energy-regenerative shock absorber, which increases its feasibility and practicability.
Technical Paper

Application of Wavelet Analysis in Truck Cab Vibration Signal Processing

2012-09-24
2012-01-2011
The basic principle of wavelet transform is presented and the method of wavelet theory is used in vibration signal analysis of vehicle in this paper. The vibration signals which generated in the locations such as cab floor, engine, transmission, band spring and frame under the usual work condition are measured by the vibration test system. The vibration signals are decomposed with the principle of wavelet decomposition at level six, and eigenvectors of signal energy are gained. According to the correlation coefficient of eigenvectors of signal energy distribution, two signals correlativity is determined. It could be an effective method that identificate the main vibration source.
Technical Paper

Fuzzy Control of Semi-active Air Suspension for Cab Based on Genetic Algorithms

2008-10-07
2008-01-2681
Semi-active suspension has been widely applied in commercial vehicle suspension in order to get good riding comfortableness. Fuzzy logic control (FLC) has been widely applied in the field of kinetic control because control rule of FLC is easy to understand. But the gain of fuzzy rules and adjustment of membership functions usually depend on experts' experiences and repeated experiments, thus the fuzzy rules and membership functions has strong subjectivity, also are easily affected by environment of experiments, so the main problem of fuzzy logic controller design is selection and optimization of fuzzy rules and membership functions. Genetic Algorithms (GA) is the algorithm that searches the optimal solution through simulating natural evolutionary process and is one of the evolution algorithms which have most extensive impact.
X