Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

2024-09-12
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. The goal of this two-day course is to introduce engineers and managers to the basic principles of cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

2024-07-02
2024-01-3007
Increasingly stringent regulations relating to the emissions of passenger cars and commercial vehicles demand alternative powertrain technologies in order to effectively achieve the climate targets. Hydrogen can play a crucial role as alternative energy carrier regarding the EU targets for CO2-neutral mobility towards 2050. Therefore, it represents a reasonable choice not only for fuel cell powered vehicles, but also for fueling internal combustion engines (ICE). This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble ICE with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern ICEs.
Technical Paper

Supercharger Boosting on H2 ICE for Heavy Duty applications

2024-07-02
2024-01-3006
Commercial vehicle powertrain is called to respect a challenging roadmap for CO2 emissions reduction, quite complex to achieve just improving technologies currently on the market. In this perspective alternative solutions are taking interest, and the use of green H2 as fuel for ICE is considered a high potential solution with fast and easy adoption. To assure the required low engine out NOx emission to fulfill future legislations the engine should be operated with lean air fuel rations all over the engine map. A challenge following this strategy is to supply sufficient boost pressure for sufficient air mass flow rate to target same power output as the diesel engine. At the same time the transient response improvement is the key to keep NOx emission low also during transient engine operation. The analysis presented in this paper will show and quantify the positive impact that a supercharger has on both the above mentions problems.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Sustainable Fuels for Long-Haul Truck Engines: a 1D-CFD Analysis

2024-06-12
2024-37-0027
Heavy duty truck engines are quite difficult to electrify, due to the large amount of energy required on-board, in order to achieve a range comparable to that of diesels. This paper considers a commercial 6-cylinder engine with a displacement of 12.8 L, developed in two different versions. As a standard diesel, the engine is able to deliver more than 420 kW at 1800 rpm, whereas in the CNG configuration the maximum power output is 330 kW at 1800 rpm. Maintaining the same combustion chamber design of the last version, a theoretical study is carried out in order to run the engine on Hydrogen, compressed at 700 bar. The study is based on GT-Power simulations, adopting a predictive combustion model, calibrated with experimental results. The study shows that the implementation of a combustion system running on lean mixtures of Hydrogen, permits to cancel the emissions of CO2, while maintaining the same power output of the CNG engine.
Technical Paper

Numerical Study on the Design of a Passive Pre-Chamber for a Heavy-Duty Hydrogen Combustion Engine

2024-04-09
2024-01-2112
Lean-burn hydrogen internal combustion engines are a good option for future transportation solutions since they do not emit carbon-dioxide and unburned hydro-carbons, and the emissions of nitric-oxides (NOx) can be kept low. However, under lean-burn conditions the combustion duration increases, and the combustion stability decreases, leading to a reduced thermal efficiency. Turbulent jet ignition (TJI) can be used to extend the lean-burn limit, while decreasing the combustion duration and improving combustion stability. The objective of this paper is to investigate the feasibility of a passive pre-chamber TJI system on a heavy-duty hydrogen engine under lean-burn conditions using CFD modelling. The studied concept is mono-fuel, port-fuel injected, and spark ignited in the pre-chamber. The overall design of the pre-chamber is discussed and the effect of design parameters on the engine performance are studied.
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
Technical Paper

Downsizing a Heavy-Duty Natural Gas Engine by Scaling the Air Handling System and Leveraging Phenomenological Combustion Model

2024-04-09
2024-01-2114
A potential route to reduce CO2 emissions from heavy-duty trucks is to combine low-carbon fuels and a hybrid-electric powertrain to maximize overall efficiency. A hybrid electric powertrain can reduce the peak power required from the internal combustion engine, leading to opportunities to reduce the engine size but still meet vehicle performance requirements. Although engine downsizing in the light-duty sector can offer significant fuel economy savings mainly due to increased part-load efficiency, its benefits and downsides in heavy-duty engines are less clear. As there has been limited published research in this area to date, there is a lack of a standardized engine downsizing procedure.
Technical Paper

Highway Exhaust Emissions of a Natural Gas-Diesel Dual-Fuel Heavy-Duty Truck

2024-04-09
2024-01-2120
Diesel-fueled heavy-duty vehicles (HDVs) can be retrofitted with conversion kits to operate as dual-fuel vehicles in which partial diesel usage is offset by a gaseous fuel such as compressed natural gas (CNG). The main purpose of installing such a conversion kit is to reduce the operating cost of HDVs. Additionally, replacing diesel partially with a low-carbon fuel such as CNG can potentially lead to lower carbon dioxide (CO2) emissions in the tail-pipe. The main issue of CNG-diesel dual-fuel vehicles is the methane (CH4, the primary component of CNG) slip. CH4 is difficult to oxidize in the exhaust after-treatment (EAT) system and its slip may offset the advantage of lower CO2 emissions of natural gas combustion as CH4 is a strong greenhouse gas (GHG). The objective of this study is to compare the emissions of an HDV with a CNG conversion kit operating in diesel and dual-fuel mode during highway operation.
Technical Paper

Construction of Life Prediction Process for Engine Parts by Using Real-World Driving Data and Simulation Models

2024-04-09
2024-01-2244
To help ensure that engine components are as reliable as customers need them to be, we have thus far evaluated them by establishing development target values based on market requirements, having engineers design parts to meet these requirements, then performing durability tests. These durability requirements are calculated to provide a margin of safety for use in the marketplace. However, depending on the part, these evaluation criteria can be overly aggressive against how it is used in the market, having led to a decrease in development efficiency as engine systems become more advanced. Therefore, in this study, we focused on the subject of high-cycle fatigue, which affects numerous components and is highly scalable, and built up a process for estimating the life span of components that would enable us to conduct appropriate evaluations that reflect how parts are truly used in the market.
Technical Paper

Modeling and Control Strategy for Engine Thermal Management System

2024-04-09
2024-01-2234
In order to study the influence of engine silicone oil fan clutch on the performances of engine cooling system under different control strategies, a model of engine cooling system for light truck is established. The working characteristics of the silicone oil clutch and the measured performance parameters of the cooling system components are taken into account in our proposed model. Modeling methods for different silicone oil fan control strategies are also given. Using the established model, the performance parameters under different vehicle speeds, such as coolant temperature of engine outlet and power consumption of cooling fan, are calculated and analyzed. The in-suite measurement of the engine cooling system is carried out to get the temperatures of engine coolant inlet and outlet from engine ECU. The model is validated by the comparison between the calculation and the measured results.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Development of an Ultra-Low Carbon Flex Dual-Fuel Ammonia Engine for Heavy-Duty Applications

2024-04-09
2024-01-2368
The work examined the practicality of converting a modern production 6 cylinder 7.7 litre heavy-duty diesel engine for flex dual-fuel operation with ammonia as the main fuel. A small amount of diesel fuel (pilot) was used as an ignition source. Ammonia was injected into the intake ports during the intake stroke, while the original direct fuel injection equipment was retained and used for pilot diesel injection. A bespoke engine control unit was used to control the injection of both fuels and all other engine parameters. The aim was to provide a cost-effective retrofitting technology for existing heavy-duty engines, to enable eco-friendly operation with minimal carbon emissions. The tests were carried out at a baseline speed of 600 rpm for the load range of the engine (10-90%), with minimum pilot diesel quantity and as high as 90% substitution ratio of ammonia for diesel fuel.
X