Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

2024-09-12
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. The goal of this two-day course is to introduce engineers and managers to the basic principles of cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Fully Retractable Easy Access Spare Wheel Carrier Mechanism for Commercial Vehicles.

2024-04-09
2024-01-2225
In today's market practise & standard mechanism being provided from OEM, tyre changing mechanism is a tedious job, took long time & much higher efforts in Indian trucking industry harsh environments. Heavy commercial vehicles are fitted with spare wheel carrier that has a rope mechanism to load and unload the spare wheel. The mounting of this system is generally on side of frame/ chassis or within the limits of side member. The invention reduces effort and time required to remove spare tyre. The invention brings the spare wheel to a vertical position where it is easy to remove its bolts and remove it from its mountings. Also, this innovative mechanism is well supported by 3 way actuation system (Air Actuated system, Electric motor driven system or Hydraulic cylinder actuated mechanisms), which reduced human efforts and gives benefit to drivers in terms of comfort.
Technical Paper

Maximizing FCEV Stack Cooling Performance: Developing a Performance Prediction Model Based on Machine Learning for Evaporative Cooling Radiator

2024-04-09
2024-01-2586
Recently, regulations on automobile emissions, including Euro7, have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions, including NOx are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines, which are more detrimental than gasoline engine. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles(BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity. However, fuel-cell electric vehicles(FCEVs) use hydrogen as a fuel to generate electricity, allowing them to achieve a long driving range with relatively fewer batteries.
Technical Paper

Numerical study on the design of a passive prechamber on a heavy-duty hydrogen combustion engine

2024-04-09
2024-01-2112
Lean-burning hydrogen internal combustion engines are potentially a good option for future transportation solutions since they do not emit carbon-dioxide and unburned hydro-carbons, and the emissions of nitric-oxides can be kept low. However, under lean-burn conditions the combustion duration increases and the combustion stability decreases, leading to a reduced thermal efficiency. Turbulent jet ignition (TJI) can be used to extend the lean-burn limit, while decreasing the combustion duration and improving combustion stability. The objective of this paper is to investigate the feasibility of a passive prechamber TJI system on a heavy-duty hydrogen engine under lean-burn conditions using CFD modelling. The studied concept is mono-fuel, port-fuel injected, and spark ignited in the prechamber. The overall design of the prechamber is discussed and the effect of certain design parameters have on the engine performance are studied.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pick-up Trucks

2024-04-09
2024-01-2089
It is more and more challenging for internal combustion engines in pick-up trucks which have heavy weight and high drag, to fulfill both strict fuel economy and emission regulations toward the target of “Carbon Neutrality”, while exceeding customer expectations. To overcome these difficult tasks, Toyota has developed the new 2.4L L4 turbocharged gasoline engine which for the first time complies with severe emission regulations such as Tier3 Bin30/LEVIII SULEV30 for body-on-frame midsize pick-up trucks. At the same time, both thermal-efficiency and maximum torque are improved by adopting high-speed combustion to the turbocharged engine based on the TNGA (Toyota New Global Architecture) platform, spray guide combustion by center direct injection in combustion chamber, quick light-off close-coupled three-way catalyst and a quick response turbocharger.
Technical Paper

Development of a Direct-Injection Heavy-Duty Hydrogen Engine

2024-04-09
2024-01-2609
Hydrogen-fuelled internal combustion engines (ICEs) offer a promising zero-carbon fuel option for some applications. As part of the global effort to study hydrogen ICEs Ricardo has developed single-cylinder and multi-cylinder heavy-duty engines. The engines are representative of a 13 litre Euro VI heavy-duty production application converted to run on hydrogen fuel with limited changes. The engine is fitted with direct hydrogen injectors which enable flexible injection strategies and reduce hydrogen in the intake system. Steady-state testing was carried out over an array of speed and load points covering a typical heavy-duty drive-cycle area. Engine test results are presented and analysed in this paper. The combustion system can run to values exceeding lambda 5 and 40% exhaust gas recirculation (EGR) can be tolerated.
Technical Paper

A Deviation-based Centroid Displacement Method for Combustion Parameters Acquisition

2024-04-09
2024-01-2839
The absence of combustion information continues to be one of the key obstacles to the intelligent development of engines. Currently, the cost of integrating cylinder pressure sensors remains too high, prompting attention to methods for extracting combustion information from existing sensing data. Mean-value combustion models for engines are unable to capture changes of combustion parameters. Furthermore, the methods of reconstructing combustion information using sensor signals mainly depend on the working state of the sensors, and the reliability of reconstructed values is directly influenced by sensor malfunctions. Due to the concentration of operating conditions of hybrid vehicles, the reliability of priori calibration map has increased. Therefore, a combustion information reconstruction method based on priori calibration information and the fused feature deviations of existing sensing signals is proposed and named the "Deviation-based Centroid Displacement Method" (DCDM).
Technical Paper

Development of an Ultra-Low Carbon Flex Dual-Fuel Ammonia Engine for Heavy-Duty Applications

2024-04-09
2024-01-2368
The work examined the practicality of converting a standard production 6 cylinder 8 litre heavy-duty diesel engine for flex dual-fuel operation with Ammonia as the main fuel. A small amount of diesel fuel (aka pilot) was used as an ignition source. Ammonia was injected into the intake ports of the engine cylinders during the intake stroke, while the original fuel injection equipment was retained and used for pilot diesel injection. A bespoke engine control unit was used to control the injection of both fuels and other engine parameters. The aim was to provide a cost-effective retrofitting technology for existing heavy-duty IC engines, to enable eco-friendly operation with minimal carbon emissions. The tests were carried out at a baseline speed of 600 rpm for the entire load range of the engine (10-90%), with minimum pilot diesel quantity and as high as 90% substitution ratio of ammonia for diesel fuel.
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
Technical Paper

Highway Exhaust Emissions of a Natural Gas-Diesel Dual-Fuel Heavy-Duty Truck

2024-04-09
2024-01-2120
Diesel-fueled heavy-duty vehicles (HDVs) can be retrofitted with conversion kits to operate as dual-fuel vehicles in which partial diesel usage is offset by a gaseous fuel such as compressed natural gas (CNG). The main purpose of installing such a conversion kit is to reduce the operating cost of HDVs. Additionally, replacing diesel partially with a low-carbon fuel such as CNG can potentially lead to lower carbon dioxide (CO2) emissions in the tail-pipe. The main issue of CNG-diesel dual-fuel vehicles is the methane (CH4, the primary component of CNG) slip. CH4 is difficult to oxidize in the exhaust after-treatment (EAT) system and its slip may offset the advantage of lower CO2 emissions of natural gas combustion as CH4 is a strong greenhouse gas (GHG). The objective of this study is to compare the emissions of an HDV with a CNG conversion kit operating in diesel and dual-fuel mode during highway operation.
Technical Paper

DESIGN DEVELOPMENT AND WEIGHT OPTIMIZATION OF CRANKSHAFT FOR COMMERCIAL VEHICLE APPLICATION

2024-04-09
2024-01-2175
In Crank- Train system, the prime objective of crankshaft is to facilitate the transformation of reciprocating motion of connecting rod into rotational motion at flywheel end. Moreover, the contribution of mass from crankshaft is in the same order as of Flywheel assembly mass which accounts to approximately 40 to 50% of total mass of engine. Therefore, to accomplish the development of an efficient engine it is vital to optimize the crankshaft based on simulation parameters like balance rate, mass, torsional frequency, web shear stress etc. In the given work, crankshaft has been designed and developed for an Engine used in light duty commercial vehicle. The defined work demonstrates the application of 1D Simulation tool AVL Excite in development phase of the Engine. To establish an equilibrium between the weight and simulation guidelines, many iterations of models were evaluated and finally we were able to achieve mass reduction of nearly 8% from the base model.
Technical Paper

Downsizing a Heavy-Duty Natural Gas Engine by Scaling the Air Handling System and Leveraging Phenomenological Combustion Model

2024-04-09
2024-01-2114
A potential route to reduce CO2 emissions from heavy-duty trucks is to combine low-carbon fuels and vehicle electrification/hybridization. Hybridization offers the potential to downsize the engine. Although engine downsizing in the light-duty sector can offer significant fuel economy savings mainly due to increased part-load efficiency, its benefits and downsides in heavy-duty engines are less clear. As there has been limited published research in this area to date, there is a lack of a standardized engine downsizing procedure. This paper aims to use an experimentally validated one-dimensional phenomenological combustion model in a commercial engine simulation software GT-Power alongside turbocharger scaling methods to develop downsized engines from a baseline 6-cylinder (2.2 L/cyl, 26 kW/L) pilot-ignition, direct-injection natural gas engine.
Technical Paper

Maximum Pulling Force Calculation of Permanent Magnet Tractor Motors in Electric Vehicle Applications

2024-04-09
2024-01-2217
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a 90deg quarter model based on motor symmetry to save the simulation time from 2 days to 4 hours. A rotor position sweep was conducted using the quarter model to find the max pulling force position. The result shows that the max pulling force happens when the rotor is 1mm overlapping with the stator core.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in compressors has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence modeling (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2°and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under full operating conditions was investigated. The results showed that for the compressor performance, the turbulence models and time-step parameters selection were within 1.5% error of the simulated and measured values for pressure ratio and efficiency.
Technical Paper

Experimental Study of Ammonia Combustion in a Heavy-Duty Diesel Engine Converted to Spark Ignition Operation

2024-04-09
2024-01-2371
Ammonia is one of the carbon-free alternatives considered for power generation and transportation sectors. But ammonia’s lower flame speed, higher ignition energy, and higher nitrogen oxides emissions are challenges in practical applications such as internal combustion engines. As a result, modifications in engine design and control and the use of a secondary fuel to initiate combustion such as natural gas are considered for ammonia-fueled engines. The higher-octane number of methane (the main component in natural gas) and ammonia allows for higher compression ratios, which in turn would increase the engine's thermal efficiency. One simple approach to initiate and control combustion for a high-octane fuel at higher compression ratios is to use a spark plug. This study experimentally investigated the operation of a heavy-duty compression ignition engine converted to spark ignition and ammonia-methane blends.
Technical Paper

Control Strategy for Engine Silicone Oil Fan Clutch Based on Engine Cooling System

2024-04-09
2024-01-2234
In order to study the influence of engine silicone oil fan clutch on the performances of engine cooling system under different control strategies, a model of engine cooling system for commercial vehicle is established. The working characteristics of the silicone oil clutch and the measured performance parameters of the cooling system components are taken into account in our proposed model. Modeling methods for different silicone oil fan control strategies are also given. Using the established model, the performance parameters under different vehicle speeds, such as engine outlet coolant temperature and cooling fan power consumption, are calculated and analyzed. The in-suite measurement of the engine cooling system is carried out to get the temperatures of engine inlet and outlet from engine ECU. The model is validated by the comparison between the calculation and the measured results.
Technical Paper

Construction of Life Prediction Process for Engine Parts by Using Real-world Driving Data and Simulation Models

2024-04-09
2024-01-2244
To help ensure that engine components are as reliable as customers need them to be, we have thus far evaluated them by establishing development target values based on market requirements, having engineers design parts to meet these requirements, then performing durability tests. These durability requirements are calculated to provide a margin of safety for use in the marketplace. However, depending on the part, these evaluation criteria can be overly aggressive against how it is used in the market, having led to a decrease in development efficiency as engine systems become more advanced. Therefore, in this study, we focused on the subject of high-cycle fatigue, which affects numerous components and is highly scalable, and built up a process for estimating the life span of components that would enable us to conduct appropriate evaluations that reflect how parts are truly used in the market.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
X