Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

2024-09-12
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. The goal of this two-day course is to introduce engineers and managers to the basic principles of cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Optimizing Closed Loop Air Mass Control in Naturally Aspirated Engines: A Differential Pressure Sensor Approach to meet BS6 Emission Norms

2024-01-16
2024-26-0147
In order to meet stringent emission targets and to achieve better fuel efficiency, closed loop air mass control strategies have become essential across all vehicle segments. Closed loop air mass control mandates measuring fresh air mass entering the engine combustion chamber. However, in Naturally Aspirated (NA) engines, while measuring air mass using conventional methods such as Hot Film Air mass (HFM) sensor, heavy pulsations in the Air-intake results in errors which would impact closed loop air mass control and lead to inconsistencies in emissions. To address this issue, we studied different approaches using HFM sensor with Resonator, differential pressure sensor across the intake air filter and Lambda based air mass control. Based on this empirical study we found that modelling air mass with differential pressure sensor using Bernoulli’s principle (Flow rate ∝ √Differential pressure) results in higher accuracies compared to conventional methods.
Technical Paper

Experimental and Numerical Investigation of a Single-Cylinder Methanol Port-Fuel Injected Spark Ignition Engine for Heavy-Duty Applications.

2024-01-16
2024-26-0072
With the increasing focus on reducing CO2 emissions to combat global warming and climate change, the automotive industry is exploring near zero-emission alternative fuels to replace traditional fossil-based fuels like diesel, gasoline, and CNG. Methanol is a promising alternative fuel that is being evaluated in India due to its easy transportation and storage, as well as its production scalability and availability potential. This study focuses on the retro-fitment solution of M100 (pure methanol) SI port-fuel injection (PFI) mode of combustion. A heavy duty single-cylinder engine test setup was used to assess methanol SI combustion characteristic. Lean operation strategy has been investigated. At lean mixture conditions a significant drop in NOX and CO emissions was achieved. The fuel injection techniques and the impact of exhaust gas recirculation (EGR) on the conventional stoichiometric combustion process is highlighted.
Technical Paper

Development of Fuel efficiency Enhancement Module for tractors

2024-01-16
2024-26-0064
In farm tractors, the available drawbar power and Power Take-Off (PTO) power are generally lower than the engine power due to parasitic losses. These losses are caused by engine-driven auxiliary loads such as cooling fans, hydraulic pumps for power steering, alternators, etc. Minimizing these parasitic losses can increase the available drawbar power and PTO power, resulting in direct fuel savings by reducing fuel consumption. The continuous increase in fuel costs and the environmental impact of emitted gases from burned fuel into the atmosphere have necessitated the replacement of hydraulic power steering and mechanical fans with electric power steering (EPS) and electric fans, respectively, to improve efficiency. The existing battery has been replaced with a higher capacity battery to provide power to the electric fan, electric power steering, and other electrical components.
Technical Paper

Reduction of carbon footprint using Additive Inspired design in Tractor Hydraulic systems

2024-01-16
2024-26-0070
Tractor usage is growing due to introduction of wide range of implements and applications. Tractor plays a major role in Agri and Construction applications. Due to the environmental factors, restrictions are set on the tractor emissions. This brings new challenge in the tactor industry to reduce the carbon footprint. By reducing the weight of the tractor, Co2 emissions can be reduced. Many of the components in the Hydraulic systems are made of metal casting. Conventional casting process involves preparation of die & mold, material removal at unwanted regions, machining in the final stage to get the desired final product. Contrary to conventional manufacturing process, Additive Manufacturing process is a transformative approach to industrial production that enables creation of lighter and stronger parts. The process involves creation of 3D component by adding material layer by layer.
Technical Paper

An Innovative and Customer Centric Approach on Validating Telematics Based Fleet Optimization Feature for Small Commercial Vehicles

2024-01-16
2024-26-0378
Commercial transportation is the key pillar of any growing economy. Light commercial vehicles are increasing every day to cater the logistics demand, but there is always a gap between customer’s actual and desired operational efficiency. This is because of lack of organized fleet and efficient fleet operation. The major requirement of fleet owners is timely delivery, high productivity , downtime reduction, real time tracking, etc., Automakers are now providing fleet management application in modern LCV to satisfy the fleet operator requirement. However, any feature malfunction, consignment mismatch, wrong notification, missed alerts, etc., can incur huge loss to fleet operator and disrupt the entire supply chain. Hence it is very critical to extensively validate the telematics features in fleet management application. This paper explains the approach for exhaustive validation strategy of fleet management applications (B2B) from end user perspective.
Technical Paper

Refined Driveline Isolation in Bus Vehicles

2024-01-16
2024-26-0205
Bus vehicles required isolated NVH performance at the mounting of the Engine, Propeller shaft, AC Compressor, etc. within a relative package envelope. This paper demonstrates the most predominant NVH case in Bus vehicles in which aggregates are mounted on the chassis Frame and its attachment point stiffness and mobility in multi directions are studied. The same was evaluated analytically and tested so as to cater to NVH issues in vehicles. Also, it contains the details of the systematic approach used with the help of digital software by creating the analytical model so as to resolve issues of multi-direction high mobility and relatively low stiffness at the attachment points. This evaluated model can be used across similar application vehicles so to avoid multi-iteration design and development costs. Digital Analysis indicates a good correlation with the tests for specific loading conditions. Multiple solutions were studied that were confirmed in the analysis.
Technical Paper

NVH refinement of small commercial vehicle

2024-01-16
2024-26-0219
In today's dynamic market scenario and with the change of user priorities, NVH refinement has utmost importance for quiet and vibration free vehicles. This trend of refined NVH vehicles is seen getting well accepted by commercial vehicle segment also. Feeling of discomfort resulting in health issues also looking at its maximum usage in urban and rural areas. This demands boom noise free cabins, and lower tactile vibration of the vehicle. Noise within the vehicle is influenced by excitation from the engine, driveline, exhaust system, road excitations, suspension of the vehicle structure (structure borne noise) and its radiation into the air (air borne noise). This paper discusses the approach used to reduce "In-cab boom" noise in the operating speed sweep condition and seat track vibration during engine IDLE condition to improve driver comfort. In this paper NVH refinement was carried out on small commercial vehicle.
Standard

Operator Enclosure Pressurization System Test Procedure

2023-12-07
CURRENT
J1012_202312
This SAE Recommended Practice establishes a uniform test procedure for evaluating performance of operator enclosure pressurization systems for construction, general-purpose industrial, agricultural, forestry, and specialized mining machinery as categorized in SAE J1116 for off-road, self-propelled work machines.
Standard

Performance Requirements for SAE J844 Nonmetallic Air Brake Tubing and Push to Connect Fitting Assemblies Used in Vehicular Air Brake Systems

2023-12-07
CURRENT
J2494/3_202312
This SAE Standard is intended to establish uniform performance criteria and methods of testing push-to-connect tube fittings, with SAE J844 air brake tubing as used in vehicular air brake systems. The specific tests and performance criteria applicable to the tubing are set forth in SAE J844. The test values contained in this performance standard are for test purposes only. For environmental and usage limitations, refer to SAE J844.
Technical Paper

Simulation and On-Road Testing of VTS on a Heavy Duty Diesel Engine Truck

2023-10-31
2023-01-1672
Estimated engine torque is an important parameter used by automotive systems for automated transmission and clutch control. Heavy-duty engine and transmission manufacturers widely use SAE J -1939 based ECU torque calculation based on mass air/fuel flow steady state maps created during calibration of the engine for this purpose. As an alternative, to enhance the accuracy of this important control variable, a virtual flywheel torque sensor (VFTS) was developed. It measures the engine torque based on the harmonics of the instantaneous flywheel speed signal. Initial dynamometer testing showed the VFTS estimated torque values exhibited a maximum inaccuracy of 12% of the actual measured torque over the range of conditions tested. In this paper we report the results of on road truck testing of the VFTS. A loaded heavy truck with a gross vehicle weight rating of 80,000 pounds was used.
Technical Paper

Development of the Electrically Controlled Off-Road Small Diesel Engine below 19kW

2023-10-24
2023-01-1844
In these days, not only low exhaust emission but also carbon dioxide reduction is required to achieve carbon neutrality toward resolution of climate change. Though examination of electrification and decarbonized fuel is progressing, industrial machines have issues for high load factor and infrastructure development. Therefore, trends of off-road powertrain are expected to be diversified depending on usage environment or applications. As a result, in terms of diesel engines below 19 kW, it should be the best way for satisfying the social needs to develop new diesel engines which have high environmental performance by optimizing engine combustion. In the case of diesel engines below 19 kW, it is difficult for the engines to adopt the direct injection (DI) combustion system and the common rail system (CRS). The fuel spray of these small displacement engines by DI or CRS easily attaches the wall surface of combustion chamber due to the small bores and causes increasing fuel consumption.
Technical Paper

A Study on Developing MPI Hydrogen ICE over 2MPa BMEP for Medium Duty Vehicles

2023-09-29
2023-32-0037
Hydrogen ICE can achieve carbon neutrality and is adaptable to medium and heavy-duty vehicles, for which electricity is not always a viable option. It can also be developed using high-quality conventional diesel/gasoline engine technology. Furthermore, it allows for the conversion of existing engines to hydrogen ICE, making it highly marketable. The reliability and durability of MPI hydrogen ICE is better than that of DI, and MPI has an advantage over DI in terms of cruising range because the low-pressure injection of hydrogen reduces the remaining hydrogen in the tank. Improving MPI output is, however, an important subject, and achieving this requires suppressing abnormal combustion such as pre-ignition. In this study, an inline four-cylinder 5L turbo-charged diesel engine was converted to a hydrogen engine. Hydrogen injectors were installed in the intake ports and spark plugs were installed instead of diesel fuel injectors.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
X