Refine Your Search




Search Results

Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
Technical Paper

Optimization of the IC Engine Piston Skirt Design Via Neural Network Surrogate and Genetic Algorithms

Internal combustion (IC) engines still power most of the vehicles on road and will likely to remain so in the near future, especially for heavy duty applications in which electrification is typically more challenging. Therefore, continued improvements on IC engines in terms of efficiency and longevity are necessary for a more sustainable transportation sector. Two important design objectives for heavy duty engines with wet liners are to reduce friction loss and to lower the risks of cavitation damages, both of which can be greatly influenced by the piston-liner clearance and the design of the piston skirt. However, engine design optimization is difficult due to the nonlinear interactions between the key design variables and the design objectives, as well as the multi-physics and multi-scale nature of the mechanisms that are relevant to the design objectives.
Technical Paper

Numerical Evaluation of Injection Parameters on Transient Heat Flux and Temperature Distribution of a Heavy-Duty Diesel Engine Piston

A major concern for a high-power density, heavy-duty engine is the durability of its components, which are subjected to high thermal loads from combustion. The thermal loads from combustion are unsteady and exhibit strong spatial gradients. Experimental techniques to characterize these thermal loads at high load conditions on a moving component such as the piston are challenging and expensive due to mechanical limitations. High performance computing has improved the capability of numerical techniques to predict these thermal loads with considerable accuracy. High-fidelity simulation techniques such as three-dimensional computational fluid dynamics and finite element thermal analysis were coupled offline and iterated by exchanging boundary conditions to predict the crank angle-resolved convective heat flux and surface temperature distribution on the piston of a heavy-duty diesel engine.
Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

Research on Design Development and Modification of a Steel Piston in a Heavy-Duty Diesel Engine

The thermal and mechanical loads of the engine rise dramatically with the increase in engine power density, which places higher demands on the design of the piston. In this paper, the design development of a steel piston for a marine diesel engine belonging to 190 series heavy-duty diesel engines was studied. The design methods including material selection and structural design were used to finished the preliminary design. In the meanwhile, the design philosophies of the aluminum alloy piston and composite piston for the 190 series diesel engines were used for reference in the design process. The designed steel piston was tested in the engine durability bench test and simulated for reliability. The results showed that the failure of the steel piston occurred at the same position in both the test and the simulation. The cause of cracking in the steel piston was analyzed, and the insufficient strength of the local structure led to high-cycle fatigue failure.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Technical Paper

Greenhouse Gas Reduction from EnviroKool Piston in Lean Burn Natural Gas and Diesel Dual Fuel Heavy Duty Engine

Heavy-duty (HD) internal combustion engines (ICE) have achieved quite high brake thermal efficiencies (BTE) in recent years. However, worldwide GHG regulations have increased the pace towards zero CO2 emissions. This, in conjunction with the ICE reaching near theoretical efficiencies means there is a fundamental lower limit to the GHG emissions from a conventional diesel engine. A large factor in achieving lower GHG emissions for a given BTE is the fuel, in particular its hydrogen to carbon ratio. Substituting a fuel like diesel with compressed natural gas (CNG) can provide up to 25% lower GHG at the same BTE with a sufficiently high substitution rate. However, any CNG slip through the combustion system is penalized heavily due to its large global warming potential compared to CO2. Therefore, new technologies are needed to reduce combustion losses in CNG-diesel dual fuel engines.
Journal Article

Applying the Hilbert Envelope Method to Refine the Ultrasonic Technique for Piston Ring Oil Film Thickness Measurements in a Marine Diesel Engine

Abstract The greatest frictional contributor in an internal combustion engine is the contact between the piston ring pack and cylinder liner. Therefore, an improved lubrication regime has the potential to raise engine efficiency while lowering emissions, aiding to meet environmental regulations. Previous ultrasonic measurements of the oil film thickness (OFT) between piston rings and the cylinder liner in a marine engine have been subject to several unexpected trends. This article refines the measurement to identify and remove these factors, the trends were found to have arisen due to the detection of ultrasonic reflections from the piston ring outside of the expected alignment zone. The extent of these undesired reflections is thought to be due to the liner thickness providing a relatively large distance for spreading of the ultrasonic wavefront.
Technical Paper

Conceptual Design Proposal for Adapting D-Cycle Technology in Agricultural Tractor Engine

This paper reviews application of D-Cycle technology to compact tractor diesel engine for improving efficiency & power. The study considers design challenges that are presented for accommodating D-Cycle technology in engine. The paper also covers resolving those challenges with established technical solutions. The study focuses on modifying conventional compact 4-stroke diesel engine with the intention of keeping design changes to a minimum level for incorporating differential stroke technology. Designing of vertically splitting lightweight piston crown which can be smoothly engaged and separated from main piston body without any impact, stem rod which connects piston crown with rocker arm, split connecting rod and rocker arm which is actuated by extra actuating camshaft in addition of present valvetrain camshaft, are covered. Lubrication of additional actuating camshaft is done by extending existing oil galleries.
Journal Article

Measurement of Piston Friction with a Floating Liner Engine for Heavy-Duty Applications

The further increase in the efficiency of heavy-duty engines is essential in order to reduce CO2 emissions in the transport sector. This is also valid for the future use of alternative fuels, which can be CO2-neutral, but can cause higher total costs of ownership due to higher prices and limited availability. In addition to thermodynamic optimization, the reduction of mechanical losses is of great importance. In particular, there is a high potential in the piston bore interface, since continuously increasing cylinder pressures have a strong influence on the frictional and lateral piston forces. To meet these future challenges of increasing heavy-duty engine efficiency, AVL has developed a floating liner engine for heavy-duty applications based on its tried and tested passenger car floating liner concept.
Journal Article

Application of Image Color Analysis for the Assessment of Injector Nozzle Deposits in Internal Combustion Engines

Abstract The article contains the results of operational investigations of deposit formation on external and internal surfaces of injector nozzles of the marine self-ignition engines during their operational use. The aim of this article is to introduce an image analysis method for global assessment of the quantity and quality of injector nozzle deposits in piston internal combustion engines. The components of medium-speed marine engines fueled with distillation and residual fuels were investigated. Digital images of new and used injector nozzles without deposits and with random deposits formed after natural operation on marine ships, respectively, were taken. Macro and microscopy images of external surfaces were taken in a shadowless tent and were illuminated with low-temperature lamps. The characteristic surfaces of the injector nozzles were virtually separated from the white background.

Hydraulic Cylinder Leakage Test

Applies to hydraulic cylinders which are components of off-road self-propelled work machines defined in SAE J1116.
Journal Article

Numerical Assessment of Additive Manufacturing-Enabled Innovative Piston Bowl Design for a Light-Duty Diesel Engine Achieving Ultra-Low Engine-Out Soot Emissions

Abstract The design of diesel engine piston bowls plays a fundamental role in the optimization of the combustion process, to achieve ultralow soot emissions. With this aim, an innovative piston bowl design for a 1.6-liter light-duty diesel engine was developed through a steel-based additive manufacturing (AM) technique, featuring both a sharp step and radial bumps in the inner bowl rim. The potential benefits of the proposed hybrid bowl were assessed through a validated three-dimensional computational fluid dynamics (3D-CFD) model, including a calibrated spray model and detailed chemistry. Firstly, the optimal spray targeting was identified for the novel hybrid bowl over different injector protrusions and two swirl ratio (SR) levels. Considering the optimal spray targeting, an analysis of the combustion process was carried out over different engine working points, both in terms of flame-wall interaction and soot formation.
Technical Paper

Characterization of Cycle-by-Cycle Variations of an Optically Accessible Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition

The combustion process in spark-ignition engines can vary considerably cycle by cycle, which may result in unstable engine operation. The phenomena amplify in natural gas (NG) spark-ignition (SI) engines due to the lower NG laminar flame speed compared to gasoline, and more so under lean burn conditions. The main goal of this study was to investigate the main sources and the characteristics of the cycle-by-cycle variation in heavy-duty compression ignition (CI) engines converted to NG SI operation. The experiments were conducted in a single-cylinder optically-accessible CI engine with a flat bowl-in piston that was converted to NG SI. The engine was operated at medium load under lean operating conditions, using pure methane as a natural gas surrogate. The CI to SI conversion was made through the addition of a low-pressure NG injector in the intake manifold and of a NG spark plug in place of the diesel injector.
Technical Paper

Reduced Piston Oil Cooling for Improved Heavy-Duty Vehicle Fuel Economy

Increased electrification of future heavy-duty engines and vehicles can enable many new technologies to improve efficiency. Electrified oil pumps are one such technology that provides the ability to reduce or turn off the piston oil cooling jets and simultaneously reduce the oil pump flow to account for the reduced flow rate required. This can reduce parasitic losses and improve overall engine efficiency. In order to study the potential impact of reduced oil cooling, a GT-Power engine model prediction of piston temperature was calibrated based on measured piston temperatures from a wireless telemetry system. A simulation was run in which the piston oil cooling was controlled to target a safe piston surface temperature and the resulting reduction in oil cooling was determined. With reduced oil cooling, engine BSFC improved by 0.2-0.8% compared to the baseline with full oil cooling, due to reduced heat transfer from the elevated piston temperatures.
Technical Paper

Effects of an Annular Piston Bowl-Rim Cavity on In-Cylinder and Engine-Out Soot of a Heavy-Duty Optical Diesel Engine

The effect of an annular, piston bowl-rim cavity on in-cylinder and engine-out soot emissions is measured in a heavy-duty, optically accessible, single-cylinder diesel engine using in-cylinder soot diagnostics and exhaust smoke emission measurements. The baseline piston configuration consists of a right-cylindrical bowl, while the cavity-piston configuration features an additional annular cavity that is located below the piston bowl-rim and connected to the main-combustion chamber through a thin annular passage, accounting for a 3% increase in the clearance volume, resulting in a reduction in geometric compression ratio (CR) from 11.22 to 10.91. Experiments using the cavity-piston configuration showed a significant reduction of engine-out smoke ranging from 20-60% over a range of engine loads.

Hydraulic Cylinder Integrity Test

Applies to hydraulic cylinders which are components of Off-Road Work Machines defined in SAE J1116.
Technical Paper

Optimizing the Piston/Bore Tribology: The Role of Surface Specifications, Ring Pack, and Lubricant

The present study looks into different possibilities for tribological optimization of the piston/bore system in heavy duty diesel engines. Both component rig tests and numerical simulations are used to understand the roles of surface specifications, ring pack, and lubricant in the piston/bore tribology. Run-in dynamics, friction, wear and combustion chamber sealing are considered. The performance of cylinder liners produced using a conventional plateau honing technology and a novel mechanochemical surface finishing process - ANS Triboconditioning® - is compared and the importance of in-design “pairing” of low-viscosity motor oils with the ring pack and the cylinder bore characteristics in order to achieve maximum improvement in fuel economy without sacrificing the endurance highlighted. A special emphasis is made on studying morphological changes in the cylinder bore surface during the honing, run-in and Triboconditioning® processes.