Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of the Roll Cage of an Electric All Terrain Vehicle (e-ATV) Using the Finite Element Method

2024-02-23
2023-01-5178
The design and analysis of the roll cage for the ATV car are the subjects of this report. The roll cage is one of the key elements of an ATV car. It is the primary component of an ATV, on which the engine, steering, and gearbox are mounted. The vehicle's sprung mass is beneath the roll cage. The initiation of cracks and the deformation of the vehicle are caused by forces acting on it from various directions. Stresses are consequently produced. FEA of the roll cage is used in this paper in an effort to identify these areas. We have performed torsional analysis as well as front, rear, side impact, and rollover crash analyses. These analyses were all completed using ANSYS Workbench 2020 R1. The design process complies with all guidelines outlined in the SAE rule book of E-Baja.
Standard

OBD Communications Compliance Test Cases for Heavy-Duty Components and Vehicles

2023-06-13
CURRENT
J1939/84_202306
The purpose of this SAE Recommended Practice is to verify that vehicles and/or components are capable of communicating a required set of information, which is described by the diagnostic messages specified in SAE J1939-73, that is in accordance with off-board diagnostic tool interface requirements contained in the government regulations cited below. This document describes the tests, methods, and results for verifying diagnostic communications from an off-board diagnostic tool (i.e., scan tool) to a vehicle and/or component. SAE members have generated this document to serve as a guide for testing vehicles for compliance with ARB and other requirements for emissions-related on-board diagnostic (OBD) functions for heavy-duty engines used in medium- and heavy-duty vehicles. The development of HD OBD regulations by U.S.
Technical Paper

Design, Material Selection, Simulation and Manufacturing of ROPS and FOPS for Motor Grader

2023-05-25
2023-28-1348
Motor grader is self-propelled, versatile machine widely used for road construction and maintenance in mining and construction applications. It required working in rugged terrain with uneven and slippery surfaces. Probability of rollover in motor grader is more due to the vehicle profile and high centre of gravity. In light of the above, Roll over Protective Structure (ROPS) is essential to safe guard the operator from any fatal injuries / life during the operation of the equipment at different terrain conditions. Considering DGMS (Directorate of General Mines and safety) requirements, a rugged two post Rollover Protective Structure (ROPS) was designed as per ISO 3471 criteria for ROPS and Falling object Protection Structure (FOPS) as per ISO 3449 Material selection for ROPS and FOPS is one of significant factor in design process by meeting the design criteria. It should have dual characteristic, firstly, it is expected to tough enough to withstand sudden impact forces.
Technical Paper

Research on Overload Dynamic Identification Based on Vehicle Vertical Characteristics

2023-04-11
2023-01-0773
With the development of highway transportation and automobile industry technology, highway truck overload phenomenon occurs frequently, which poses a danger to road safety and personnel life safety. So it is very important to identify the overload phenomenon. Traditionally, static detection is adopted for overload identification, which has low efficiency. Aiming at this phenomenon, a dynamic overload identification method is proposed. Firstly, the coupled road excitation model of vehicle speed and speed bump is established, and then the 4-DOF vehicle model of half car is established. At the same time, considering that the double input vibration of the front and rear wheels will be coupled when vehicle passes through the speed bump, the model is decoupled. Then, the vertical trajectory of the body in the front axle position is obtained by Carsim software simulation.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
Standard

Immunity to Conducted Transients on Power Leads

2023-03-20
CURRENT
J1082_202305
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Immunity to Conducted Transients on Power Leads

2023-03-20
CURRENT
J1113/11_202303
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Crane Hoist Line Speed and Power Test Procedure

2022-10-26
WIP
J820
This document applies primarily to mobile cranes that lift loads by means of a drum and hoist line mechanism. It can be used to determine the hoist line speed and power of other hoist line mechanisms, if the load can be held constant and hoist line travel distance is sufficient for the accuracy of the line speed measurements prescribed. This recommended practice applies to all mechanical, hydraulic, and electric powered hoist mechanisms.
Standard

Minimum Performance Criteria for Falling Object Guards for Excavators

2022-09-08
CURRENT
J1356_202209
This SAE Recommended Practice applies only to excavators, as defined in ISO 6165, working above ground, near an excavated or free-standing bank or mine face which is higher than the top of the cab, or in demolition applications of freestanding buildings or objects higher than the top of the cab.
Standard

Low-Speed Vehicles

2022-08-19
CURRENT
J2358_202208
This SAE Standard defines the safety and performance requirements for low-speed vehicles (LSVs). The safety specifications in this document apply to any powered vehicle with a minimum of four wheels, a maximum level ground speed of more than 32 km/h (20 mph) but not more than 40 km/h (25 mph), and a maximum gross vehicle weight of 1361 kg (3000 pounds), that is intended for operating on designated roadways where permitted by law.
Standard

Light Utility Vehicles

2022-07-19
CURRENT
J2258_202207
This SAE Standard defines requirements relating to the elements of design, operation, and maintenance of light utility vehicles (LUVs). The safety specifications in this document apply to any self-propelled, operator-controlled, off-highway vehicle 1829 mm (72 inches) or less in overall width, exclusive of added accessories and attachments, operable on three or more wheels or tracks, primarily intended to transport material loads or people, with a gross vehicle weight of 2500 kg (5500 pounds) or less, and a maximum design speed less than or equal to 40.23 km/h (25 mph). This document is not intended to cover go-karts (ASTM F2007-07a), fun-karts (ASTM F2011-02e1), dune buggies, and all terrain-vehicles (ATVs) complying with ANSI/SVIA 1.
Standard

Identification and Installation of Air Brake System Components

2022-07-06
CURRENT
J2580_202207
This Recommended Practice covers air braked trucks, truck-tractors, trailers and buses. It enumerates the identification and installation of the air brake components not covered in other SAE recommended practices and standards.
Standard

Truck Deformation Classification

2022-06-02
CURRENT
J1301_202206
The scope and purpose of this SAE Recommended Practice is to provide a classification system for deformation sustained by trucks involved in collisions on the highway. Application of the document is limited to medium trucks, heavy trucks, and articulated combinations.1 The Truck Deformation Classification (TDC) classifies collision contact deformation, as opposed to induced deformation, so that the deformation is segregated into rather narrow limits or categories. Studies of collision deformation can then be performed on one or many data banks with assurance that data under study are of essentially the same type.2 Many of the features of the SAE J224 MAR80 have been retained in this document, although the characters within specific columns vary. Each document must therefore be applied to the appropriate vehicle type. It is also important to note that the TDC does not identify specific vehicle configurations and body types.
X