Refine Your Search


Search Results

Technical Paper

Design of a Cover Plate Cum Powerpack Loading Platform for Armoured Engineering Vehicles

Armoured engineering vehicles are a class of vehicles that cater to the engineering needs such as repair, recovery, technical maintenance, clearing obstacles etc. in field conditions for Main Battle Tanks (MBTs) during times of combat. In addition to the above needs, such vehicles are also supposed to carry sufficient spares including a spare powerpack that includes an engine cum transmission for MBTs as a piggyback during field replacement. Such requirements entail challenges in the design as locating such a powerpack on the vehicle impose additional structural strengthening and stability concerns during both static and dynamic conditions without obviating the need to carry vehicle spares and weight constraints. This paper tries to address these design challenges through a case study, wherein a cover plate that is supposed to seal the powerpack compartment from dust and water ingress is converted to a cover plate cum loading platform.
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Technical Paper

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Technical Paper

Design, Synthesis and Analysis of Loader Bucket, Boom and Linkages for Amphibious Infantry Combat Vehicle

Currently, for various military activities such as construction of bridges, digging trenches, construction of roads and clearing the area during landslides, separate unit of bulldozer for dozing operation and loader for loading operation is required. But the need is to develop a single unit which could perform both of these operations efficiently and simultaneously. The paper discusses about the development of dozer bucket mechanism as a single unit to perform dozing and loading operation and connected to the amphibious infantry combat vehicle. To develop the dozer bucket mechanism synthesis of mechanism (Linkages and Boom) has carried out and care has taken to fulfill the above stated functional requirement and satisfy the geometrical constraints. The synthesis of mechanism is done with the help of ‘CATIA’ software packages. The force calculation on various joints at the different position of mechanism has evaluated with the help of ’ADAMS’ software.

Perspectives on Integrating Structural Health Monitoring Systems into Fixed-Wing Military Aircraft

This SAE Aerospace Information Report (AIR) is prepared for stakeholders seeking information about the evolution, integration, and approval of SHM technologies for military aircraft systems. The report provides this information in the form of (a) two military organizations’ perspectives on requirements, and (b) general SHM challenges and industry perspectives. The report only provides information to generate awareness of perspectives for military aircraft and, hence, assists those who are involved in developing SHM systems understanding the broad range of regulations, requirements, and standards published by military organizations that are available in the public domain from the military organizations.

Fuze Well Mechanical Interface

This interface standard applies to fuzes used in airborne weapons that use a 3-in fuze well. It defines: Physical envelope of the fuze well at the interface with the fuze. Load bearing surfaces of the fuze well. Physical envelope of the fuze and its connector. Mechanical features (e.g., clocking feature). Connector type, size, location and orientation. Retaining ring and its mechanical features (e.g., thread, tool interface). Physical envelope of the retaining ring at the interface with the fuze. Physical space available for installation tools. Torque that the installation tool shall be capable of providing. This standard does not address: Materials used or their properties. Protective finish. Physical environment of the weapon. Explosive interface or features (e.g., insensitive munitions (IM) mitigation). Charging tube. Torque on the retaining ring or loads on the load bearing surfaces.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.

Tech Briefs: June 2018

Beyond VMEbus - A New Concept Taming the Thermal Behavior of Solid-State Military Lasers Solving the Challenge of Thermal Design in Aerospace Electronics Improving Component Life in Abrasive, Corrosive Aerospace Environments New Pulse Analysis Techniques for Radar and EW Validation of Ubiquitous 2D Radar Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments Technological improvements make pulsed-power experiments with gunpowder- or air-driven guns safer. Low-Cost Ground Sensor Network for Intrusion Detection COTS-based system could provide increased level of security with less manpower. In-Network Processing on Low-Cost IoT Nodes for Maritime Surveillance Commercially available system of distributed wireless sensors could increase the Navy's intelligence collection footprint.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.

Tech Briefs: April 2018

Laser Detecting Systems Enhancing Survivability and Lethality on the Battlefield Designing With Plastics for Military Equipment Engine Air-Brakes Paving the Way to Quieter Aircraft Nett Warrior Enhancing Battlefield Connectivity and Communications XPONENTIAL 2018 - An AUVSI Experience Communications in Space: A Deep Subject First Air-Worthy Metal-Printed RF Filter Ready for Takeoff Validation of Automated Prediction of Blood Product Needs Algorithm Processing Continuous Non-Invasive Vital Signs Streams (ONPOINT4) Using a combination of non-invasive sensors, advanced algorithms, and instruments built for combat medics could reduce hemorrhaging and improve survival rates. Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback Successful development of mobile weapon systems must incorporate operation on sloped terrain.

Automatic Target Recognition, Third Edition

This third edition of Automatic Target Recognition provides a roadmap for breakthrough ATR designs―with increased intelligence, performance, and autonomy. Clear distinctions are made between military problems and comparable commercial deep-learning problems. These considerations need to be understood by ATR engineers working in the defense industry as well as by their government customers. A reference design is provided for a next-generation ATR that can continuously learn from and adapt to its environment. The convergence of diverse forms of data on a single platform supports new capabilities and improved performance. This third edition broadens the notion of ATR to multisensor fusion. Radical continuous-learning ATR architectures, better integration of data sources, well-packaged sensors, and low-power teraflop chips will enable transformative military designs.
Technical Paper

Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading

Improving injury prediction accuracy and fidelity for mounted Warfighters has become an area of focus for the U.S. military in response to improvised explosive device (IED) use in both Iraq and Afghanistan. Although the Hybrid III anthropomorphic test device (ATD) has historically been used for crew injury analysis, it is only capable of predicting a few select skeletal injuries. The Computational Anthropomorphic Virtual Experiment Man (CAVEMAN) human body model is being developed to expand the injury analysis capability to both skeletal and soft tissues. The CAVEMAN model is built upon the Zygote 50th percentile male human CAD model and uses a finite element modeling approach developed for high performance computing (HPC). The lower extremity subset of the CAVEMAN human body model presented herein includes: 28 bones, 26 muscles, 40 ligaments, fascia, cartilage and skin.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.

Diminishing Manufacturing Sources and Material Shortages (DMSMS) Management Practices

Diminishing Manufacturing Sources and Material Shortages (DMSMS) is the loss or impending loss of manufacturers or suppliers of critical items and raw materials due to production discontinuance. DMSMS is an increasingly difficult problem for DoD weapon systems because the manufacturing lives of many critical items get shorter while the life cycles of military weapon systems keep increasing. Traditionally, efforts to mitigate the effects of DMSMS have been reactive; that is, the effects are addressed only when they are seen. This reactive approach to DMSMS solutions leads to decisions that put a premium on faster solution paths with attractive short-term gains in order to avoid system inoperability, while ignoring the long-term solution paths that would lead to generic families of solutions or larger-scale solutions with the capability of avoiding future DMSMS issues. In order to solve DMSMS issues with lower overall cost, DMSMS solutions must change from reactive to proactive.

Lubricating Oil, Internal Combustion Engine, Military Combat/Tactical Service

This SAE Standard covers engine military oils suitable for lubrication of reciprocating internal combustion engines of both spark-ignition and compression-ignition types, and for power transmission fluid applications in combat/tactical service equipment (see 7.1). This document is equivalent to MIL-PRF-2104G when all requirements are met.

Military Tire Glossary

This glossary of tire military/industry terminology is a direct result of many months of planned and coordinated work by the SAE Military/Industry Tire Technology Nomenclature Task Force. This effort was put forth with the hope of leading the military and industry towards standardization of terminology. This glossary represents the latest state-of-the-art terms and definitions for military use. This SAE Recommended Practice shall remain open for comments from the reader and shall also be reviewed and updated periodically. Many similar terms and definitions were reviewed from shich the ones best applied to military use were selected. It is the purpose of this task force to provide technical definitions in present day use. Please do not hesitate to inform the task force of any improvements which may be required.