Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Book

SAE International's Dictionary of Testing, Verification, and Validation

2023-10-30
Created to elevate expertise in testing, verification, and validation with industry-specific terminology, readers are empowered to navigate the complex world of quality assurance. From foundational concepts to advanced principles, each entry provides clarity and depth, ensuring the reader becomes well-versed in the language of precision. This dictionary is an indispensable companion for both professionals and students seeking to unravel the nuances of testing methodologies, verification techniques, and validation processes. Readers will be equipped with the tools to communicate effectively, make informed decisions, and excel in projects. In addition, references to SAE Standards are included to direct the reader to additional information beyond a practical definition.
Standard

Wheels/Rims - Military Vehicles Test Procedures and Performance Requirements

2023-07-14
CURRENT
J1992_202307
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of disc wheels, demountable rims, and bolt-together divided wheels intended for normal highway use on military trucks, buses, truck-trailers, and multipurpose vehicles. Users may establish design criteria exceeding the minimum performance requirement for added confidence in a design. For other (non-military) wheels and rims intended for normal highway use on trucks and buses, refer to SAE J267. For wheels intended for normal highway and temporary use on passenger cars, light trucks, and multipurpose vehicles, refer to SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. This document does not cover off-highway or other special application wheels and rims.
Technical Paper

Built-In-Test for Fiber Optic Links

2023-03-07
2023-01-1019
This work covers the historical development of Built-In-Test (BIT) for fiber optic interconnect links for aerospace applications using Optical Time Domain Reflectometry (OTDR) equipped transceivers. The original failure modes found that installed fiber optic links must be disconnected before diagnosis could begin, often resulting in “no fault found” (NFF) designation. In fact, the observed root cause was that most (85%) of the fiber optic link defects were produced by contamination of the connector end faces. In March of 2006, a fiber optics workshop was held with roughly sixty experts from system and component manufacturers to discuss the difficulties of fiber optic test in aerospace platforms. During this meeting it was hypothesized that Optical Time Domain Reflectometry (OTDR) was feasible using an optical transceiver transmit pulse as a stimulus. The time delay and amplitude of received reflections would correlate with the position and severity of link defects, respectively.
Journal Article

A Novel Cloud-Based Additive Manufacturing Technique for Semiconductor Chip Casings

2022-08-02
Abstract The demand for contactless, rapid manufacturing has increased over the years, especially during the COVID-19 pandemic. Additive manufacturing (AM), a type of rapid manufacturing, is a computer-based system that precisely manufactures products. It proves to be a faster, cheaper, and more efficient production system when integrated with cloud-based manufacturing (CBM). Similarly, the need for semiconductors has grown exponentially over the last five years. Several companies could not keep up with the increasing demand for many reasons. One of the main reasons is the lack of a workforce due to the COVID-19 protocols. This article proposes a novel technique to manufacture semiconductor chips in a fast-paced manner. An algorithm is integrated with cloud, machine vision, sensors, and email access to monitor with live feedback and correct the manufacturing in case of an anomaly.
Standard

Automotive Gear Lubricants for Commercial and Military Use

2022-05-20
CURRENT
J2360_202205
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI).
Magazine

Aerospace & Defense Technology: August 2021

2021-08-01
Thermal Management Techniques in Avionics Cooling Curing the Porosity Problem in Additive Manufacturing Space-Qualified Crystal Oscillators Reimagining Automated Test During a Pandemic EW: New Challenges, Technologies, and Requirements Software Enables New-Age, Flexible Test Solution for Analog and Digital Radios Formal Process Modeling to Improve Human-Decision-Making During Test and Evaluation Range Control Using the Innoslate software tool to formally model the process of conducting test range events can expose previously overlooked ambiguities and identify high-value decision points? Test and Evaluation of Autonomy for Air Platforms Tools, approaches, and insights to confidently approach the safe, secure, effective, and efficient testing of autonomy on air platforms.
Standard

Automotive Gear Lubricants for Commercial and Military Use

2021-01-27
HISTORICAL
J2360_202101
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI).
Standard

Automotive Gear Lubricants for Commercial and Military Use

2019-01-07
HISTORICAL
J2360_201901
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI).
Magazine

Tech Briefs: October 2018

2018-10-01
Detecting Drones with Doppler-Based Radar Digital Transformation for a Connected Enterprise Using Electromagnetic Brakes to Keep Thrust Reversers in Place Thermostatic Solutions for Temperature Control Applications Bringing RF into the Embedded World: It's Time Compact Power Amplifier Solution for Electronic Warfare Burner Rig Testing of A500® C/SiC Test method simulates, in a laboratory environment, the service conditions ceramic-matrix composite material would experience in turbine engine exhaust applications. Space Debris Orbit and Attitude Prediction for Enhanced and Efficient Space Situational Awareness Developing accurate models to predict the behavior of manmade debris in space could be the key to preventing collisions with satellites. Maintaining Enterprise Resiliency Via Kaleidoscopic Adaption and Transformation of Software Services (MEERKATS) Implementing new technologies to create a more resilient, secure cloud computing environment.
Magazine

Tech Briefs: August 2018

2018-08-01
Designing a High-Speed Decoy Unmanned Aerial Vehicle (UAV) Using Thermoplastics in Aerospace Applications In-Flight Real-Time Avionics Adaptation Using Turbine Flow Meters for Aerospace Test and Measurement Applications Communicating from Space: The Front End of Multiscale Modeling Laser-Based System Could Expand Space-to-Ground Communication Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Research could lead to development of a composite material that can be processed at a low temperature and still be used at 1000°F. Permeation Tests on Polypropylene Fiber Materials Study attempts to determine if polypropylene nanofiber materials can be used in air filtration systems to remove toxic vapors. Inter-Laboratory Combat Helmet Blunt Impact Test Method Comparison Ensuring consistent test methods could reduce the risk of head injuries.
Standard

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

2016-01-14
HISTORICAL
J3061_201601
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. The best practices are intended to be flexible, pragmatic, and adaptable in their further application to the vehicle industry as well as to other cyber-physical vehicle systems (e.g., commercial and military vehicles, trucks, busses). Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM REQUIREMENTS FOR CHEMICAL PROCESSING

1995-03-01
HISTORICAL
AS7108
This Aerospace Standard (AS) establishes the requirements for suppliers of Chemical Processing Services to be accredited by the National Aerospace and Defense Contractors Accreditation Program (NADCAP). NADCAP accreditation is granted in accordance with SAE AS7003 after demonstrating compliance with the requirements herein. These requirements may be supplemented by additional requirements specified by NADCAP Chemical Processes Task Group. Using the audit checklist (AC7108) will ensure that accredited Chemical Process suppliers meet all of the requirements in this standard and all applicable supplementary standards.
X