Refine Your Search

Topic

Search Results

Training / Education

AS13003 Measurement System Analysis (MSA) Requirements for Aerospace Engine Supplier Quality

2021-06-30
AS 13003:2015 stipulates requirements to establish an acceptable measurement system (for variable and attribute features) for use on aerospace engines parts and assemblies. Measurement Systems Analysis (MSA) is used to evaluate and improve measurement systems in the workplace because it evaluates the test method, measuring instruments, and the process of acquiring measurements. The Aerospace Engine Supplier Quality (AESQ) Strategy Group published AS13003 to define the minimum requirements for conducting MSA for variable attribute assessment on characteristics as defined on the drawing specification.
Training / Education

AS13002 Qualifying an Alternate Inspection Frequency Plan

2021-06-28
AS13002 defines the process for qualifying an Alternate Inspection Frequency Plan for suppliers within the aero-engine sector. This two-day course will provide common requirements for developing and qualifying an alternate inspection plan, other than 100% inspection of all features. This course is designed to cover the basic elements of the process to be applied to design characteristics (as defined in AS9102), and parts or inspection processes as defined by the purchaser.
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2021-05-11
Production and continual improvement of safe and reliable products is key in the aviation, space and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction. The IAQG has established and deployed the AS9145 Standard, as a step to help achieve these objectives.
Training / Education

Fundamentals of GD&T 2018 3-day

2021-02-09
This course teaches the terms, rules, symbols, and concepts of GD&T as prescribed in the ASME Y14.5-2018 Standard. This course offers an in-depth explanation of geometric tolerancing symbols, their tolerance zones, applicable modifiers, common applications, and verification principles. The class includes a comparison of GD&T to the directly toleranced dimensioning method; Rules #1 and #2; form and orientation controls; tolerance of position; runout and profile controls. Newly acquired learning is reinforced throughout the class with more than 150 practice problems.
Training / Education

Engineering Project Management

2020-12-01
Project Management and Advanced Product Quality Planning (APQP) are two critical techniques used in product development in the mobility industry today. This seminar will bring these techniques together in an easy to understand format that goes beyond the typical concept of constructing timelines and project planning, by exploring not only the Automotive APQP process, but also key aspects of PM processes. Students will gain a solid foundation in the principles and application of Project Management and APQP.
Training / Education

AS13000 8D Problem Solving Requirements for Suppliers

2020-11-02
AS13000 defines the Problem-Solving standard for suppliers within the aero-engine sector, with the Eight Disciplines (8D) problem solving method the basis for this standard. This two-day course provides attendees with a comprehensive and standardized set of tools to become an 8D practitioner and meets all the requirements of the training syllabus in AS13000. Successful application of 8D achieves robust corrective and preventive actions to reduce the risk of repeat occurrences and minimize the cost of poor quality.
Training / Education

Model-Based Systems Engineering (MBSE)

2020-10-16
As the complexity of products increases, traditional text-based systems engineering can no longer meet the needs. To solve the problem, Model-based Systems Engineering offers a unified communication platform among relevant staff by carrying out diagram-based unambiguous description, analysis and design for the demand, structure and behavior of complex systems in the form of a model. It, however, still remains a challenge to implement MBSE modeling and model-driven technology and application as well as its integration with the industry.
Training / Education

Quality Function Deployment Transforming Voice of the Customer into Engineering Specifications

2020-10-15
Currently in the industry, especially within China, product requirement development is more of an experienced-based process rather than a scientific methodology. This course addresses this issue and provides a more process-driven method for better requirement development through the Quality Function Deployment (PFD) methodology. Real industrial examples are used to demonstrate how to systematically convert voice of the customer data to engineering specifications using QFD.
Technical Paper

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Research Report

Unsettled Technology Opportunities for Vehicle Health Management and the Role for Health-Ready Components

2020-03-17
EPR2020003
Game-changing opportunities abound for the application of vehicle health management (VHM) across multiple transportation-related sectors, but key unresolved issues continue to impede progress. VHM technology is based upon the broader field of advanced analytics. Much of traditional analytics efforts to date have been largely descriptive in nature and offer somewhat limited value for large-scale enterprises. Analytics technology becomes increasingly valuable when it offers predictive results or, even better, prescriptive results, which can be used to identify specific courses of action. It is this focus on action which takes analytics to a higher level of impact, and which imbues it with the potential to materially impact the success of the enterprise. Artificial intelligence (AI), specifically machine learning technology, shows future promise in the VHM space, but it is not currently adequate by itself for high-accuracy analytics.
Standard

Standard Practice for Human Systems Integration

2020-02-13
WIP
SAE6906A

This Human Systems Integration (HSI) Standard Practice identifies the Department of Defense (DoD) approach to conducting HSI programs as part of procurement activities. This Standard covers HSI processes throughout design, development, test, production, use, and disposal. Depending on contract phase and/or complexity of the program, tailoring should be applied. The scope of this standard includes prime and subcontractor HSI activities; it does not include Government HSI activities, which are covered in the DoD HSI Handbook. HSI programs should use the latest version of standards and handbooks listed below, unless a particular revision is specifically cited in the contract.

Magazine

Aerospace & Defense Technology: February 2020

2020-01-30
Rad-Hard Microelectronics for Space Applications Outsourcing Plasma Treatments for Surface Modification Adding Context to Full-Motion Video for Improved Surveillance and Situational Awareness Implementing an Aerospace Factory of the Future 90° Hybrid Coupled Power Amplifier - Pros and Cons A New Network Design for the "Internet from Space" Future Advances in Electronic Materials and Processes - Flexible Hybrid Electronics Despite progress being made, there are still significant obstacles to the manufacture and use of flexi-ble hybrid electronics in military applications. Heterogeneous Integration Technology Integrating different types of devices and materials could increase their functional density, improving the performance of electro-optic systems for sensor applications. The Impact of Cyber Cameras on the Intelligence Community The ability to covertly access and manipulate cyber cameras could provide valuable strategic data for the US intelligence community.
Training / Education

ISO 14001:2015 Lead Auditor Training

Anytime
ISO 14001:2015 is an environmental management standard (EMS) developed by the International Organization for Standardization (ISO). It’s a generic standard that can be used for any organization that provides physical products or services. ISO 14001 is the most widely used EMS because it’s both business and management oriented. However, the requirements must be carefully interpreted to make sense within a particular organization. For example, the environmental impact of developing automotive products is not the same as producing food products or offering consulting services, yet this standard can be applied to any of these activities.
Journal Article

Building Multiple Resolution Modeling Systems Using the High-Level Architecture

2019-09-16
2019-01-1917
The modeling and simulation pyramid in defense states it clearly: Multi-Level modeling and simulation are required. Models and simulations are often classified by the US Department of Defense into four levels—campaign, mission, engagement, and engineering. Campaign simulation models are applied for evaluation; mission-level simulations to experiment with the integration of several macro agents; engagement simulations in engineered systems development; and engineering-level simulation models with a solid foundation in structural physics and components. Models operating at one level must be able to interact with models at another level. Therefore, the cure (“silver bullet”) is very clear: a comprehensive framework for Multiple Resolution Modeling (MRM) is needed. In this paper, we discuss our research about how to construct MRM environments.
Standard

Fuze Well Mechanical Interface

2019-09-03
CURRENT
AS5680B
This interface standard applies to fuzes used in airborne weapons that use a 3-in fuze well. It defines: Physical envelope of the fuze well at the interface with the fuze. Load bearing surfaces of the fuze well. Physical envelope of the fuze and its connector. Mechanical features (e.g., clocking feature). Connector type, size, location and orientation. Retaining ring and its mechanical features (e.g., thread, tool interface). Physical envelope of the retaining ring at the interface with the fuze. Physical space available for installation tools. Torque that the installation tool shall be capable of providing. This standard does not address: Materials used or their properties. Protective finish. Physical environment of the weapon. Explosive interface or features (e.g., insensitive munitions (IM) mitigation). Charging tube. Torque on the retaining ring or loads on the load bearing surfaces.
Standard

S400 Copper Media Interface Characteristics Over Extended Distances

2019-07-09
CURRENT
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394-2008 Beta (formerly IEEE-1394b) as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should refer to the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
Training / Education

Human Systems Integration and SAE6906

This course introduces Human Systems Integration (HSI) and the new SAE International HSI best practice standard (SAE6906). DoD and other customers currently require HSI program plans in accordance with Department of Defense Data Item Description (DID) DI-HFAC-81743A. It is assumed that, for future system acquisition programs, customers (especially DoD) will require establishment and execution of a Human Systems Integration Program in compliance with SAE Systems Management Standard SAE6906. This course will assist students with planning and executing HSI program that are consistent with the DoD DID and SAE Standard 6906.
Standard

Standard Practice for Human Systems Integration

2019-02-08
CURRENT
SAE6906
This Human Systems Integration (HSI) Standard Practice identifies the Department of Defense (DoD) approach to conducting HSI programs as part of procurement activities. This Standard covers HSI processes throughout design, development, test, production, use, and disposal. Depending on contract phase and/or complexity of the program, tailoring should be applied. The scope of this standard includes prime and subcontractor HSI activities; it does not include Government HSI activities, which are covered in the DoD HSI Handbook. HSI programs should use the latest version of standards and handbooks listed below, unless a particular revision is specifically cited in the contract.
X