Refine Your Search

Topic

Search Results

Technical Paper

Terrain Streaming for Real-Time Vehicle Dynamics

2024-04-09
2024-01-2659
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time.
Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Technical Paper

Numerical Analysis of Lightweight Materials and their Combinations to Understand their Behaviour against High Pressure Shock Loading

2023-05-25
2023-28-1311
Materials play a key role in our day to day life and have shaped the industrial revolution to a great extent. Right selection of material for meeting a particular objective is the key to success in today’s world where the cost as well as sustainability of any equipment or a system have assumed greater significance than ever before. In automotive industry, materials have a definitive role as far as the mobility and safety is concerned. Materials that can absorb the required energy or impact can be manufactured through different manufacturing as well as metallurgical processes which involves appropriate heat treatment and bringing correct chemical compositions etc. However, they can also be formed by simpler methods such as combining certain materials together in the form of layered combinations to form light weight composites.
Technical Paper

Design and Development of Fuel Tank for High Mobility Military Vehicle

2023-05-25
2023-28-1342
Fuel tank is considered as safety component in the vehicle, and it has to be tested to meet the safety requirements as per AIS 095. Earlier, fuel tanks were manufactured by using Hot dipped cold rolled steel material and the weld zones are applied with Anti-corrosive coating. Few fuel tanks were reported with Corrosion problems. The root cause analysis was carried out considering the raw material, manufacturing process, transpiration, storage and usage. As an improvement, the new fuel tank is designed to eliminate the limitations of the existing fuel tank. 3D modeling was done to check space and mounting requirement in the layout and used for volume calculations. FE analysis was performed to check structural stability. Emphasis given on Interchange-ability to cater the new fuel tanks in place of old as spares requirement. The fuel tank has developed with Alumina steel material.
Journal Article

Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models

2023-04-11
2023-01-0112
Fatigue analysis of pistons is reliant on an accurate representation of the high temperatures to which they are exposed. It can be difficult to represent this accurately, because instrumented tests to validate piston thermal models typically include only measurements near the piston crown and there are many unknown backside heat transfer coefficients (HTCs). Previously, a methodology was proposed to aid in the estimation of HTCs for backside convection boundary conditions of a stratified charge compression ignition (SCCI) piston. This methodology relies on Bayesian inference of backside HTC using a co-simulation between computational fluid dynamics (CFD) and finite element analysis (FEA) solvers. Although this methodology primarily utilizes the more computationally efficient FEA model for the iterations in the calibration, this can still be a computationally expensive process.
Journal Article

Numerical Analysis of Armored Fighting Vehicle Escape Hatch Subjected to Mine Blast Loading Using Coupled Eulerian-Lagrangian Technique

2023-03-30
Abstract This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits.
Journal Article

A Novel Flight Dynamics Modeling Using Robust Support Vector Regression against Adversarial Attacks

2023-03-24
Abstract An accurate Unmanned Aerial System (UAS) Flight Dynamics Model (FDM) allows us to design its efficient controller in early development phases and to increase safety while reducing costs. Flight tests are normally conducted for a pre-established number of flight conditions, and then mathematical methods are used to obtain the FDM for the entire flight envelope. For our UAS-S4 Ehecatl, 216 local FDMs corresponding to different flight conditions were utilized to create its Local Linear Scheduled Flight Dynamics Model (LLS-FDM). The initial flight envelope data containing 216 local FDMs was further augmented using interpolation and extrapolation methodologies, thus increasing the number of trimmed local FDMs of up to 3,642. Relying on this augmented dataset, the Support Vector Machine (SVM) methodology was used as a benchmarking regression algorithm due to its excellent performance when training samples could not be separated linearly.
Journal Article

Development and Optimization of Formation Flying for Unmanned Aerial Vehicles Using Particle Swarm Optimization Based on Reciprocal Velocity Obstacles

2022-09-23
Abstract In this article, a formation flying technique designed for a multiple unmanned aerial vehicles (multi-UAV) system to provide low-cost and efficient solution for civilian and military applications is presented. First, a modular leader-follower formation algorithm was developed to accomplish the formation flying with off-the-shelf low-cost components and sensors. Second, a proportional-integral-derivative (PID) controller was utilized for velocity control of the UAVs to maintain the tight formation. Third, a particle swarm optimization-optimized reciprocal velocity obstacles (PSO-RVO) algorithm was utilized for obstacles avoidance and collision avoidance between the UAVs while navigating, with the aid of sonar ranging sensors onboard. The formation flying algorithm developed was tested through both simulation and experiment using two quadcopters with global positioning system (GPS) signals.
Article

SAE International extends call for abstracts, seeks submissions for AeroTech conference

2022-08-11
Engineering Events staff at SAE International in Warrendale, Pennsylvania, have extended the call for abstracts through September 21 for the organization’s AeroTech aerospace and defense technology conference, which will take place at the Fort Worth Convention Center in Fort Worth, Texas, March 14-16, 2023. Visit the AeroTech call for abstracts page for more information and to get started.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Article

Advanced simulation using the digital twin to achieve electromagnetic compatibility and electrification management in a modern UAS

2022-01-13
The aerospace industry is facing immense challenges due to increased design complexity and higher levels of integration, particularly in the electrification of aircraft. These challenges can easily impact program cost and product time to market. System electrification and electromagnetic compatibility (EMC) have become critical issues today. In the context of 3D electromagnetics, EMC electromagnetic compatibility ensures the original equipment manufacturer (OEM) that radiated emissions from various electronic devices, such as avionics or the entire aircraft for that matter, do not interfere with other electronic products onboard the aircraft.
Standard

Reliability Physics Analysis of Electrical, Electronic, and Electromechanical Equipment, Modules and Components

2021-12-30
CURRENT
J3168_202112
This recommended practice has been developed for use in any EEE system used in the AADHP industries. RPA is especially important to AADHP systems, which are often safety critical applications that must operate for long times in rugged environments. These EEE systems often use EEE components that were originally designed and produced for more benign consumer applications. Although the focus of this recommended practice is on AADHP applications, the process described herein is not limited to AADHP and may be used for EEE systems and components in any industry.
Journal Article

Algorithm Development for Avoiding Both Moving and Stationary Obstacles in an Unstructured High-Speed Autonomous Vehicular Application Using a Nonlinear Model Predictive Controller

2020-10-19
Abstract The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model.
Journal Article

Design of a 1.2 kW Interleaved Synchronous Buck Converter for Retrofit Applications in Aviation Systems

2020-10-19
Abstract Presently, 270 V direct current (DC) systems replace older 28 V DC voltage systems in both the civil and military aviation industry due to the requirement for more electrical power needs on board. Therefore, the existing avionics require retrofitting. The conversion from 270 V to 28 V appears to be quite promising for both old and new systems. This study aims to design an interleaved synchronous modular buck converter topology as a candidate for these requirements. Calculations for the converter design are conducted considering aviation standards. Switching with pulse-width modulation (PWM) is used to control the power converter. A double-loop feedback control system based on voltage and current feedback is designed. Therefore, the buck converter circuit with 1145 W power output is proposed, which supplies a 28 V and 41 A DC output from a 270 V DC input. The concept is verified using simulations and hardware-in-the-loop (HIL) experimental results.
Training / Education

Model-Based Engineering Overview for Systems Management Practitioners

Use of Model-Based Systems Engineering (MBSE) has been growing across industry, extending beyond defense and aerospace to include various commercial enterprises such as automotive and healthcare. Tool vendors are quick to point out benefits of this model-based approach and practices but are not always clear how MBSE benefits can be realized on a project. When deployed successfully, several key considerations should be addressed that maximize the value for a use-case. This four-hour class will discuss the nature and purpose of the MBSE approach and how key information is used for successful MBSE deployment as it relates to Systems Management.
Journal Article

Building Multiple Resolution Modeling Systems Using the High-Level Architecture

2019-09-16
2019-01-1917
The modeling and simulation pyramid in defense states it clearly: Multi-Level modeling and simulation are required. Models and simulations are often classified by the US Department of Defense into four levels—campaign, mission, engagement, and engineering. Campaign simulation models are applied for evaluation; mission-level simulations to experiment with the integration of several macro agents; engagement simulations in engineered systems development; and engineering-level simulation models with a solid foundation in structural physics and components. Models operating at one level must be able to interact with models at another level. Therefore, the cure (“silver bullet”) is very clear: a comprehensive framework for Multiple Resolution Modeling (MRM) is needed. In this paper, we discuss our research about how to construct MRM environments.
Training / Education

Model-Based Systems Engineering (MBSE)

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). As the complexity of products increases, traditional text-based systems engineering can no longer meet the needs. To solve the problem, Model-based Systems Engineering offers a unified communication platform among relevant staff by carrying out diagram-based unambiguous description, analysis and design for the demand, and structure and behavior of complex systems in the form of a model.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

2018-09-03
2018-36-0232
While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.
X