Refine Your Search

Topic

Search Results

Training / Education

AS13004 Process Failure Mode and Effects Analysis (PFMEA) and Control Plans

2021-05-18
In the Aerospace Industry there is a growing focus on Defect Prevention to ensure that quality goals are met. Process Failure Mode & Effects Analysis (PFMEA) and Control Plan activities described in AS13004 are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Process Flow Diagrams, Process Failure Mode & Effects Analysis (PFMEA) and Control Plans as described in AS13004. It will show the links to other quality tools such as Design FMEA, Characteristics Matrix and Measurement Systems Analysis (MSA).
Technical Paper

Design of a Cover Plate Cum Powerpack Loading Platform for Armoured Engineering Vehicles

2020-09-25
2020-28-0356
Armoured engineering vehicles are a class of vehicles that cater to the engineering needs such as repair, recovery, technical maintenance, clearing obstacles etc. in field conditions for Main Battle Tanks (MBTs) during times of combat. In addition to the above needs, such vehicles are also supposed to carry sufficient spares including a spare powerpack that includes an engine cum transmission for MBTs as a piggyback during field replacement. Such requirements entail challenges in the design as locating such a powerpack on the vehicle impose additional structural strengthening and stability concerns during both static and dynamic conditions without obviating the need to carry vehicle spares and weight constraints. This paper tries to address these design challenges through a case study, wherein a cover plate that is supposed to seal the powerpack compartment from dust and water ingress is converted to a cover plate cum loading platform.
Standard

Reliability, Maintainability, and Sustainability Terms and Definitions

2020-04-21
CURRENT
J3119_202004
A glossary of basic terms and definitions useful for working in reliability, maintainability, and sustainability (RMS). The terms used in most engineering technologies tend to be physical characteristics such as speed, rate of turn, and fuel consumption. While they may require very careful definition and control of the way in which they are measured, the terms themselves are not subject to different interpretations. Reliability, maintainability, and sustainability (RMS), however, use terms that are defined in a variety of ways with multiple interpretations. The variety of definitions given to a single term creates problems when trying to compare the performance of one system to another. To eliminate the confusion, a literature search that listed current and past RMS terms and definitions was conducted. The literature search included input from the U.S. military, UK military, NATO, SAE, IEEE, NASA, ISO, university research, and other publications.
Technical Paper

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Research Report

Unsettled Technology Opportunities for Vehicle Health Management and the Role for Health-Ready Components

2020-03-17
EPR2020003
Game-changing opportunities abound for the application of vehicle health management (VHM) across multiple transportation-related sectors, but key unresolved issues continue to impede progress. VHM technology is based upon the broader field of advanced analytics. Much of traditional analytics efforts to date have been largely descriptive in nature and offer somewhat limited value for large-scale enterprises. Analytics technology becomes increasingly valuable when it offers predictive results or, even better, prescriptive results, which can be used to identify specific courses of action. It is this focus on action which takes analytics to a higher level of impact, and which imbues it with the potential to materially impact the success of the enterprise. Artificial intelligence (AI), specifically machine learning technology, shows future promise in the VHM space, but it is not currently adequate by itself for high-accuracy analytics.
Training / Education

FEA Beyond Basics: Nonlinear Analysis Web Seminar RePlay

Anytime
Finite Element Analysis (FEA) has been an indispensable tool for design simulation for several decades but this wide spread use has been limited to simple types of analyses. Relatively recently, more advanced analyses have given easy-to-use interfaces enabling design engineers to simulate problems formerly reserved for analysts. FEA Beyond Basics targets the FEA users who wish to explore those advanced analysis capabilities. It will demonstrate how to move past the ubiquitous linear structural analysis and solve structural nonlinear problems characterized by nonlinear material, large displacements, buckling or nonlinear connectors.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

Basic Tire Mechanics and Applications

This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities. It serves as a good primer for the in-depth SAE Tire Forensic Analysis course.
Training / Education

Tire Forensic Analysis

This course provides a detailed description of tire failure modes, their potential causes, identification, and the sometimes-subtle nuances that go along with determination of tire failure. In addition, proper inspection techniques of tires will be discussed and samples will be available to reinforce the concepts learned. The course is helpful for investigators and individuals who need to explore and explain tire failures and point out the failure contributing factors. The course will help to clarify failure root cause between tire production process deviation, tire design, and service application.
Technical Paper

Design, Synthesis and Analysis of Loader Bucket, Boom and Linkages for Amphibious Infantry Combat Vehicle

2019-10-11
2019-28-0124
Currently, for various military activities such as construction of bridges, digging trenches, construction of roads and clearing the area during landslides, separate unit of bulldozer for dozing operation and loader for loading operation is required. But the need is to develop a single unit which could perform both of these operations efficiently and simultaneously. The paper discusses about the development of dozer bucket mechanism as a single unit to perform dozing and loading operation and connected to the amphibious infantry combat vehicle. To develop the dozer bucket mechanism synthesis of mechanism (Linkages and Boom) has carried out and care has taken to fulfill the above stated functional requirement and satisfy the geometrical constraints. The synthesis of mechanism is done with the help of ‘CATIA’ software packages. The force calculation on various joints at the different position of mechanism has evaluated with the help of ’ADAMS’ software.
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
CURRENT
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

IEEE-1394b for Military and Aerospace Vehicles - Applications Handbook

2019-08-12
CURRENT
AIR5654A
This Handbook is intended to accompany or incorporate AS5643, AS5643/1, AS5657, AS5706, and ARD5708. In addition, full understanding of this Handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a, and IEEE-1394b standards. This Handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
Technical Paper

Implementation of Active & Passive Safety for Heavy Article Tilter and Positioner (HATP)

2019-01-09
2019-26-0003
Mobile heavy article tilter and positioner (HATP) is special purpose vehicle designed to level, articulate and positioning of very heavy load within the accuracy of arc minutes and in a stipulated time in fully auto mode. HATP system uses sophisticated electronic controller system to carry out required task in auto mode. This electronic controller system comprises of various types of electronic hardware, software, sensors and actuators. As this system is dealing with heavy load, any failure in any of subsystem of HATP can result into catastrophe. Therefore active and passive safety measure at various levels must be incorporated into system which firstly prevents the failure and reduce the effect of failure. The safety system for HATP system has been divided in three major levels: 1. Access level safety 2. Operational safety 3. Preventive safety. All three levels of safety is incorporated at appropriate subsystem based on Risk Priority Number (RPN) and failure mode effect analysis.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Technical Paper

Multi-Layer Framework for Synthesis and Evaluation of Heterogeneous System-of-Systems Composed of Manned and Unmanned Vehicles

2018-10-30
2018-01-1964
The advancement of both sensory and unmanned technology, combined with increased utilization of autonomous platforms in complex teaming scenarios, has created a need for practical design space exploration tools to aid in the synthesis of effective System-of-Systems (SoS). The presented work describes a modular, flexible, and extensible framework, referred to herein as the Technologies and Teaming Evaluation (TATE) framework, for straightforward identification of high-quality SoS, which may include both manned and autonomous elements, through quantitative evaluation of system-level and SoS-level attributes against a set of user-defined reference tasks.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

2018-09-03
2018-36-0232
While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

2018-04-03
2018-01-0623
After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Training / Education

Introduction to Statistical Tolerance Stacks 1-day

This course is an introduction to statistical tolerance stacks, a crucial skill in today's competitive workplace. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, the course includes a brief overview of several terms used in statistical stacks. It explains four methods for applying statistics to tolerance stacks and covers precautions about when and how to use statistics in stacks. Newly acquired learning is reinforced throughout the class with stacks that allow the student to practice applying statistical methods.
Training / Education

Internet of Things Analytics Training Certificate of Competency

Click here for dates and additional information. Internet of Things (IoT) analytics extracts important information from the vast amount of data generated by sensors and smart devices. This IoT Analytics course targets the unmet demand for these skills in every industry vertical. This course, presented by LHPU, will help attendees build IoT capabilities from sensor to analytics using the latest devices and technologies available. Attendees will learn about embedded sensor configuration, developing custom visualizations and analytics.
X