Refine Your Search

Topic

Search Results

Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Technical Paper

Second-Life of Electric Vehicle Batteries from a Circular Economy Perspective: A Review and Future Direction

2023-08-28
2023-24-0151
The second-life use of batteries from electric vehicles (EV) represents an excellent and cost-effective option for energy storage applications, including the control of fluctuations in energy supply and demand or in combination with solar photovoltaic and wind turbine. Indeed, these batteries are normally replaced from EV use before the end of their service life, when they still have 70-80% of the original capacity. Depending on the cell chemistry and the specific design, such batteries can still be employed in less stressful applications than the automotive one, including commercial, residential, and industrial applications. With the aim to promote the transition to a circular closed-loop economy for spent traction batteries, this study consists in a systematic literature review of available options for reusing EV batteries as a storage system in a factory environment, highlighting benefits and critical aspects.
Technical Paper

Actively Articulated Wheeled Architectures for Autonomous Ground Vehicles - Opportunities and Challenges

2023-04-11
2023-01-0109
Traditional ground vehicle architectures comprise of a chassis connected via passive, semi-active, or active suspension systems to multiple ground wheels. Current design-optimizations of vehicle architectures for on-road applications have diminished their mobility and maneuverability in off-road settings. Autonomous Ground Vehicles (AGV) traversing off-road environments face numerous challenges concerning terrain roughness, soil hardness, uneven obstacle-filled terrain, and varying traction conditions. Numerous Active Articulated-Wheeled (AAW) vehicle architectures have emerged to permit AGVs to adapt to variable terrain conditions in various off-road application arenas (off-road, construction, mining, and space robotics). However, a comprehensive framework of AAW platforms for exploring various facets of system architecture/design, analysis (kinematics/dynamics), and control (motions/forces) remains challenging.
X