Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Wear Behavior of Hard Ceramic Coatings by Aluminum Oxide– Aluminum Titanate on Magnesium Alloy

2024-02-23
2023-01-5109
Magnesium and its alloys are promising engineering materials with broad potential applications in the automotive, aerospace, and biomedical fields. These materials are prized for their lightweight properties, impressive specific strength, and biocompatibility. However, their practical use is often hindered by their low wear and corrosion resistance. Despite their excellent mechanical properties, the high strength-to-weight ratio of magnesium alloys necessitates surface protection for many applications. In this particular study, we employed the plasma spraying technique to enhance the low corrosion resistance of the AZ91D magnesium alloy. We conducted a wear analysis on nine coated samples, each with a thickness of 6mm, to assess their tribological performance. To evaluate the surface morphology and microstructure of the dual-phase treated samples, we employed scanning electron microscopy (SEM) and X-ray diffraction (XRD).
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Research Report

Internal Boundaries of Metal Additive Manufacturing: Future Process Selection

2022-03-11
EPR2022006
In the early days, there were significant limitations to the build size of laser powder bed fusion (L-PBF) additive manufacturing (AM) machines. However, machine builders have addressed that drawback by introducing larger L-PBF machines with expansive build volumes. As these machines grow, their size capability approaches that of directed energy deposition (DED) machines. Concurrently, DED machines have gained additional axes of motion which enable increasingly complex part geometries—resulting in near-overlap in capabilities at the large end of the L-PBF build size. Additionally, competing technologies, such as binder jet AM and metal material extrusion, have also increased in capability, albeit with different starting points. As a result, the lines of demarcation between different processes are becoming blurred.
Journal Article

Investigation of Hot Corrosion Behavior on QE22A-Magnesium Silver Alloy through Steaming Method

2022-03-03
Abstract The hot corrosion studies for the die-casted magnesium (Mg) silver (Ag) alloys are carried out through the steam heating route. The Magnesium Silver (QE22A) alloy is fixed under the top lid of the pressure cooker (2 liters) and filled with water and 5% salt (NaCl) solution. The specimens are treated with different time intervals (10, 20, and 30 minutes), with the steam temperature maintained at 100°C around the specimen. The results showed an increase in the corrosion rate with the increase in the steaming time. Further, after the specimens have cooled down to room temperature, similar experiments are repeated for the second and third cycles. Here the formation of the oxide layers over the specimen has reduced the corrosion rate. The structural, surface study was carried out through scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) to know the corrosion behavior on the specimen.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Standard

Breath-Based Alcohol Detection System

2021-01-27
HISTORICAL
J3214_202101
This standard establishes the performance specifications for the zero-tolerance breath alcohol detection system to reduce the risks of driving under the influence of alcohol. It defines the accuracy and precision requirements of the BrAC measurement, as well as the acceptability criteria and key parameters to test these requirements. Additionally, this standard sets the performance requirements of the system for ethanol sensitivity, the response time, and the electrical, mechanical, and environmental conditions the system may encounter throughout the lifespan of the vehicle.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
X