Refine Your Search

Topic

Search Results

Training / Education

Optimizing Systems Design Engineering

2024-05-17
This full-day course is designed to equip engineering professionals with the knowledge and tools needed to combine the strengths of Design Engineering and Systems Engineering into Systems Design Engineering (SDE) principles. These principles will improve engineering efficiency and practically design more sustainable system-level products, all while strategically aligning with digital transformation objectives.
Training / Education

Engineering Project Management

2024-05-14
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Project Management and Advanced Product Quality Planning (APQP) are two critical techniques used in product development in the mobility industry today. This course will bring these techniques together in an easy to understand format that goes beyond the typical concept of constructing timelines and project planning, by exploring not only the Automotive APQP process, but also key aspects of PM processes.
Technical Paper

Wear Behavior of Hard Ceramic Coatings by Aluminum Oxide– Aluminum Titanate on Magnesium Alloy

2024-02-23
2023-01-5109
Magnesium and its alloys are promising engineering materials with broad potential applications in the automotive, aerospace, and biomedical fields. These materials are prized for their lightweight properties, impressive specific strength, and biocompatibility. However, their practical use is often hindered by their low wear and corrosion resistance. Despite their excellent mechanical properties, the high strength-to-weight ratio of magnesium alloys necessitates surface protection for many applications. In this particular study, we employed the plasma spraying technique to enhance the low corrosion resistance of the AZ91D magnesium alloy. We conducted a wear analysis on nine coated samples, each with a thickness of 6mm, to assess their tribological performance. To evaluate the surface morphology and microstructure of the dual-phase treated samples, we employed scanning electron microscopy (SEM) and X-ray diffraction (XRD).
Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Rad Bett Sessel–An Integrated Wheelchair Bed for Incorporating Ergonomics into Mobility and Rest

2024-02-23
2023-01-5121
The “Integrated Wheelchair Bed” is an innovative assistive technology designed to address the unique needs of individuals with mobility challenges. This duality concept is born out of a deep understanding of the daily challenges faced by those who require mobility aids for transportation and also need to rest periodically throughout the day, allowing for seamless transitions between mobility and rest. This dichotomy promotes both physical well-being and emotional independence, enhancing the overall quality of life for users. The need for a new wheelchair bed hybrid arises from evolving user requirements, such as improved comfort, compactness, customization, safety, technology integration, cost-efficiency, durability, versatility, aesthetics, healthcare integration, and sustainability. To overcome these problems, we have proposed a wheelchair that can be transformed into a bed using a two-bar linkage with a slot lock mechanism.
Training / Education

MBSE Design and Development

In today's complex engineering landscape, effective systems engineering is essential for ensuring the success of projects across various industries. The MBSE Design and Development training course offers a comprehensive exploration of Model-Based Systems Engineering (MBSE) principles and practices, providing participants with the technical knowledge and practical skills needed to excel in modern systems engineering. This course serves as a bridge from traditional systems engineering approaches to contemporary systems modeling methodologies.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Journal Article

Investigation of Hot Corrosion Behavior on QE22A-Magnesium Silver Alloy through Steaming Method

2022-03-03
Abstract The hot corrosion studies for the die-casted magnesium (Mg) silver (Ag) alloys are carried out through the steam heating route. The Magnesium Silver (QE22A) alloy is fixed under the top lid of the pressure cooker (2 liters) and filled with water and 5% salt (NaCl) solution. The specimens are treated with different time intervals (10, 20, and 30 minutes), with the steam temperature maintained at 100°C around the specimen. The results showed an increase in the corrosion rate with the increase in the steaming time. Further, after the specimens have cooled down to room temperature, similar experiments are repeated for the second and third cycles. Here the formation of the oxide layers over the specimen has reduced the corrosion rate. The structural, surface study was carried out through scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) to know the corrosion behavior on the specimen.
Book

Fundamentals of Geometric Dimensioning and Tolerancing 2018: Using Critical Thinking Skills, Revised Edition

2021-12-02
The Fundamentals of Geometric Dimensioning and Tolerancing 2018 Using Critical Thinking Skills by Alex Krulikowski reflects the technical content found in the latest release of the ASME Y14.5-2018 Standard. This book includes several key features that aid in the understanding of geometric tolerancing. Each of the textbook's 26 chapters focuses on a major topic that must be mastered to be fluent in the fundamentals of GD&T. Each topic includes a goal that is defined and supported by a set of performance objectives that include real-world examples, verification principles and methods, and chapter summaries. There are more than 260 performance objectives that describe specific, observable, measurable actions that the student must accomplish to demonstrate mastery of each goal. Learning is reinforced by completing three types of exercise problems, along with critical thinking questions that promote application of GD&T on the job.
Technical Paper

Optimization of One Way Tesla Valve

2021-10-01
2021-28-0250
Nikola Tesla in the year 1920 invented a new type of one-way valve, without any moving parts. He made this possible, by virtue of the geometry of the fluid path. In this work, we have optimised the design made by Tesla and increased its efficiency. Today, these valves are used in micro-fluidic systems, pulsating heat pipes, spacecraft propulsion systems etc. Apart from this, we have found that this valve can also be used in the Intra-venous fluid administration system and also in suppressors of guns. In the IV system, the valve can be used to address the reverse blood flow issue. In suppressors, the valve can reduce the pressure of hot gas coming from the gun which in turn reduces the sound made by the gun. Computational fluid dynamics (CFD) simulation was done using fluid analysis software. From CFD analysis it was observed that the efficiency of the optimised valve has increased 2 times as compared to the original tesla valve.
Training / Education

Critical Concepts of Tolerance Stacks ASME Y14.5 1994, 2009, 2018 - Advanced Level

Using tolerance stacks ensures that parts fit together properly, reducing scrap and rework, thereby increasing value. This 3-day advanced-level course includes everything covered in the 2-day foundational-level course. It explains how to use tolerance stacks to analyze product designs and how to use geometric tolerances in stacks.
Training / Education

GD&T Review and Application

Led by our senior GD&T professionals with a wide variety of industry background and experience, this one-day GD&T Review and Application course is designed for organizations who have participated in training through SAE but are looking for further clarification on how to apply GD&T best practices to specific organizational drawings. Designed to assist your design teams with highly complex design analysis problems and to support your teams through real world drawing examples, the instructor will review, answer questions, and provide feedback on tolerance analysis and GD&T implementation.
Training / Education

GD&T Fundamentals Based on ASME Y14.5-2018

Anytime
This interactive eLearning GD&T training course now utilizes HTML5 for better browser and device compatibility. It contains 23 robust, self-paced learning modules that explain the terms, symbols, modifiers, rules, and basic concepts of geometric tolerancing as prescribed in the ASME Y14.5-2018 Standard. Progress is easily measured with instant feedback throughout each lesson that reinforces and aids in concept retention, allowing the learner to determine where further review may be needed. Full color detailed animations that help participants clearly visualize concepts, along with audio narration and 3D solid part examples.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Research Report

Unsettled Topics on Nondestructive Testing of Additively Manufactured Parts in the Mobility Industry

2020-09-29
EPR2020017
Additive manufacturing (AM) technology, also known as 3D printing, has transitioned from concepts and prototypes to part-for-part substitution and the creation of unique AM-specific part geometries. These applications are increasingly present in demanding, mission-critical fields such as medicine and aerospace, which require materials with certain thermal, stiffness, corrosion, and static loading properties. To advance in these arenas, metallic, ceramic, and polymer composite AM parts need to be free from discontinuities. The manufacturing processes have to be stable, robust, and repeatable. And the nondestructive testing (NDT) technology and inspection methods will need to be sufficiently capable and reliable to ensure that discontinuities will be detected to prevent the components from being accepted for use. As the second installment of a six-part series of SAE EDGE™ Research Reports on AM, this one discusses the need, challenges, technologies, and opportunities for NDT in AM.
Training / Education

Model-Based Engineering Overview for Systems Management Practitioners

Use of Model-Based Systems Engineering (MBSE) has been growing across industry, extending beyond defense and aerospace to include various commercial enterprises such as automotive and healthcare. Tool vendors are quick to point out benefits of this model-based approach and practices but are not always clear how MBSE benefits can be realized on a project. When deployed successfully, several key considerations should be addressed that maximize the value for a use-case. This four-hour class will discuss the nature and purpose of the MBSE approach and how key information is used for successful MBSE deployment as it relates to Systems Management.
Training / Education

FEA Beyond Basics: Thermal Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

FEA Beyond Basics: Nonlinear Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) has been an indispensable tool for design simulation for several decades but this wide spread use has been limited to simple types of analyses. Relatively recently, more advanced analyses have given easy-to-use interfaces enabling design engineers to simulate problems formerly reserved for analysts. FEA Beyond Basics targets the FEA users who wish to explore those advanced analysis capabilities. It will demonstrate how to move past the ubiquitous linear structural analysis and solve structural nonlinear problems characterized by nonlinear material, large displacements, buckling or nonlinear connectors.
X