Refine Your Search

Search Results

Viewing 1 to 4 of 4
Training / Education

FEA Beyond Basics: Nonlinear Analysis Web Seminar RePlay

Finite Element Analysis (FEA) has been an indispensable tool for design simulation for several decades but this wide spread use has been limited to simple types of analyses. Relatively recently, more advanced analyses have given easy-to-use interfaces enabling design engineers to simulate problems formerly reserved for analysts. FEA Beyond Basics targets the FEA users who wish to explore those advanced analysis capabilities. It will demonstrate how to move past the ubiquitous linear structural analysis and solve structural nonlinear problems characterized by nonlinear material, large displacements, buckling or nonlinear connectors.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Journal Article

Optimization of Pneumatic Network Actuators with Isosceles Trapezoidal Chambers

Abstract Soft actuators with pneumatic network have innovative potential applications in medical and rehabilitation areas. The performance of this kind of actuators is determined by the design of chambers and the properties of the active extensible layer and the passive inextensible layer. In this article, actuator with isosceles trapezoidal chambers is proposed. Orthogonal experiment design and finite element method are used to optimize the structure of actuators. Results indicate that adding constrain-limiting paper in the passive layer can significantly reduce the bending radius. Position of the paper in the passive layer also affects the bending radius. Actuators with trapezoidal chambers can have a smaller bending radius compared with that with rectangle chambers. The bending radius decreases as the ratio of short base to long base of trapezoid decreases. Increasing the number density of chambers can further reduce the bending radius.
Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.