Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data

1991-02-01
910079
A quasidimensional engine simulation which uses the concepts of fractal geometry to model the effects of turbulence on flame propagation in a homogeneous charge SI engine has been developed. Heat transfer and blowby/crevice flow submodels are included in this code and the submodels chosen are found to be reasonable. The model predictions of cylinder pressure histories are then compared with experimental data over a range of loads, equivalence ratios, and engine speeds. The model is not adjusted in any manner to yield better agreement with the data, other than by tuning the simple turbulence model used so as to yield agreement with data for the nonreacting flow. However, current information about the flame wrinkling scales in an engine is inadequate. Therefore, predictions are made for three different assumptions about the flame wrinkling scales which span the range of physically possible scales.
Technical Paper

Development of a Computationally Fast Equilibrium-Equivalent 4-Stroke SI Engine Model

1988-02-01
880134
A set of algebraic equations has been developed to replace the iterative thermochemical equilibrium subroutine in zero-dimensional and quasidimensional engine modeling codes. These equations allow calculation of the equilibrium composition given only the equivalence ratio and the fuel characteristics, thereby allowing the composition calculations to be performed external to the iterative main loop. This technique results in a decrease of the required computational time by up to a factor of 13, dependent upon the equivalence ratio and the fuel. The predictions of the equilibrium-equivalent code agree with those of a traditional equilibrium code within 2.5% for the four fuels examined (CH4, C3H8, C2H5OH, and i-C8H18) for compression ratios between 5 and 12:1, intake manifold pressures between 50 and 100 kPa, and equivalence ratios from 0.5 to 1.5. A technique for including constrained equilibrium to account for freezing of CO oxidation during the expansion stroke is also presented.
X