Refine Your Search

Topic

Author

Affiliation

Search Results

Event

Increasing the efficiency of high-pressure systems in aerospace through 3D metal printing

2020-11-17
Heat exchangers are a prolific application found in all things that concern fluid and power; they are mission-critical applications that affect overall performance in aircraft of all sizes. Yet, for years, heat exchangers have been constrained, by traditional manufacturing, in terms of limited geometric freedom and lengthy lead times. Consider the following • Heat exchangers are commonly fabricated with stainless steel and then gold brazed, which can be extremely costly • Each weld joint costs $100; in traditionally manufactured fuel and high-pressure systems, there could be hundreds of welds • There can be a lack of integration with other systems like electrical motors or conformal cooling with batteries. Assembly integration, testing, and validation are lengthy and difficult. Additive manufacturing (aka 3D printing) has opened new possibilities for thermal conductivity and heat-exchanger design that enable end users to push the limits of what is possible.
Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure under Similar Injection Rate Condition

2020-10-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure under similar injection rate conditions on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the characteristic of local heat flux and soot distribution was almost similar by controlling similar injection rate except for the small nozzle hole size with increasing injection pressure.
Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
X