Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

Customized ROPS Application for Configurable Design at Concept Level

2020-09-25
2020-28-0474
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants.
Technical Paper

Designing and Static Analysis of the Roll Cage of an All-Terrain Vehicle (SAE e-Baja)

2020-09-25
2020-28-0378
An All-Terrain Vehicle (ATV) as defined by the American National Standards Institute (ANSI) is a vehicle that travels on low pressure tires and with a seat that is straddled by the operator, along with the handlebars for steering control. A roll cage can be defined as a skeleton of an ATV. It forms a structural base and 3-D shell around the driver. In case of impacts and roll over incidents, the roll cage is responsible for the protection of driver. The objective is to design, analyze and optimize the roll cage under a set of particular rules given by Society of Automotive Engineers (SAE). The static analysis is carried out using CATIA V5 software for different collisions like front, side, rear and roll over. The main objective of the analysis is to obtain a roll cage enough strong to bear such adverse conditions as well as light in weight for better performance. The safety of roll cage can be ensured by obtaining optimum factor of safety.
Standard

Operator Enclosure Pressurization System Test Procedure

2020-04-16
WIP
J1012
This SAE Recommended Practice establishes a uniform test procedure for evaluating performance of operator enclosure pressurization systems for construction, general-purpose industrial, agricultural, forestry, and specialized mining machinery as categorized in SAE J1116 for off-road, self-propelled work machines. The purpose of this document is to outline a procedure which will provide a uniform measurement of operator enclosure pressurization.
Standard

Overhead Protection for Agricultural Tractors - Test Procedures and Performance Requirements

2020-02-20
CURRENT
J167_202002
This SAE Standard applies to an overhead cover installed on a protective frame or enclosure conforming to SAE J2194 or alternately SAE J1194 and the following additional requirement of a drop test to verify the effectiveness of the overhead cover in protecting the operator from falling objects. The test procedures and performance requirements outlined in this document are based on currently available engineering data.
Journal Article

The Influence of the Content and Nature of the Dispersive Filler at the Formation of Coatings for Protection of the Equipment of River and Sea Transport

2020-01-23
Abstract To protect ship equipment of river and sea transport, it is suggested to use polymeric protective coatings based on epoxy diane oligomer ED-20, polyethylene polyamine (PEPA) curing agent and filler, which is a departure from industrial production. Thus the purpose of the work is analysis of major dependency of the properties on the content of fillers that allowed to revealed the critical filler content (furnace black) in composites to form a protective coating with the required set of characteristics. The infrared (IR) spectral analysis was used to investigate the presence of bonds on the surface of particles of the PM-75 furnace black, which allows us to assess the degree of cross-linking of the polymer. The influence of the content of dispersed furnace black on the physicomechanical and thermophysical properties and the structure of the protective coating is investigated.
Standard

Self-Propelled Sweepers and Scrubbers Braking Performance

2019-09-05
WIP
J1789
This SAE Standard applies to self-propelled, rider operated, sweepers and scrubbers as defined in SAE J2130 with maximum machine level surface speeds up to 32 km/h. Machines capable of speeds equal to and greater than 32 km/h are not covered by this document.
Standard

Personnel Protection - Skid Steer Loaders

2019-07-03
CURRENT
J1388_201907
This SAE Standard is intended to provide personnel protection guidelines for skid steer loaders. This document is intended as a guide towards standard practice, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. This document provides performance criteria for newly manufactured loaders and it is not intended for in-service machines.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Standard

Operator Precautions

2018-09-11
CURRENT
J153_201809
These general operator precautions apply to off-road work machines as defined in SAE J1116, and Agricultural Tractors as defined in ANSI/ASAE S390, Nov 2004. These should not be considered as all-inclusive for all specific uses and unique features of each particular machine. Other more specific operator precautions not mentioned herein should be covered by users of this recommended practice for each particular machine application.
Standard

Minimum Performance Criteria for Falling Object Guards for Excavators

2018-04-19
WIP
J1356
This SAE Recommended Practice applies only to excavators, as defined in SAE J/ISO 6165, working above ground, near an excavated or free standing bank or mine face which is higher than the top of the cab, or in demolition applications of free standing buildings or objects higher than the top of the cab. The evaluations are for resistance to penetration of guards to the point of infringement of the Deflection Limiting Volume (DLV, see SAE J397). The performance requirements of a representative specimen (that is, within the manufacturer's specifications), are based on the performance of proven structures under laboratory evaluation procedures. The areas protected include the top of the operator station (Top Guard), for protection from falling objects, and the front of the operator station (Front Guard), for protection from objects which approach the front of the cab.
Technical Paper

Structural Optimization of Rollcage Using Finite Element Analysis and Design of Experiments Approach

2018-04-15
2018-01-5014
Finite Element Analysis (FEA) is a numerical method to find solutions to real world problems and is now commonly used for product development. Various finite element analyses are performed to validate the system performance. Many finite element codes are also available for this purpose. Now-a-days, product development not only deals with the validation of design performance, but also focuses on design optimization. Methods such as one-factor-at-a-time (OFAT) experiments are generally used in which one input factor is varied at a time and its effect on system performance is studied. Design of Experiments (DOE) is a systematic approach in which more than one input factors are purposefully varied to study their effect on system performance. Finite Element Analysis and Design of Experiments approach can be used in combination for design optimization. This paper deals with the process for design optimization that can be followed using FEA and DOE in conjunction.
Collection

Advanced Analysis, Design, and Optimization for Materials, Restraints, and Structures for Enhanced Automotive Safety and Weight Reduction, 2018

2018-04-03
Papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs are included in the collection.
Collection

Advanced Analysis, Design, and Optimization for Materials, Restraints, and Structures for Enhanced Automotive Safety and Weight Reduction, 2017

2017-03-28
Papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs are included in the collection.
Technical Paper

Static Analysis on a Roll Cage Frame for an Off-Road Vehicle

2017-03-28
2017-01-1299
The objective of this research is to design and analyze a roll cage structure for an off-road vehicle that was used for SAE Baja competition by UNLV SAE Baja team. Baja SAE is an intercollegiate competition to design, fabricate, and race a small, single passenger, off-road vehicle powered by a 10 HP Briggs Stratton 4-Stroke gasoline engine. Since the off-road vehicle is powered by a small capacity engine, the weight of the structure is very critical and must be optimized to improve the performance of the vehicle. In an effort to optimize the structure, a finite element analysis (FEA) was performed and the effects of stress and deformation were studied for a linear static frontal impact analysis on roll cage structure. The frame was further modified for structural rigidity. Additional strengthening gussets were added at the locations of high stresses to reduce the stress concentration.
X