Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

AS91002016 Rev D Understanding the Requirements

2021-06-17
Individuals responsible for quality management system, implementation, and auditing to the AS9100:2016 series of standards for Aviation, Space, and Defense will require an understanding of the requirements for the preparation and execution of the audit process as defined in these revised standards. Management and implementers of AS9100:2016 Rev. D within these organizations must also be aware of what these requirements mean for their company.
Training / Education

Applying DO-254 for Avionics Hardware Development and Certification

2021-05-06
The avionics hardware industry world-wide is now commonly required to follow DO-254 Design Assurance Guidance for Airborne Electronic Hardware for literally all phases of development: Safety, Requirements, Design, Logic Implementation, V&V, Quality Assurance, etc. The DO-254 standard is a companion to the software DO-178B standard; however, there are many differences between hardware and software which must be understood. This basic course introduces the intent of the DO-254 standard for commercial avionics hardware development.
Training / Education

Critical Concepts of Tolerance Stacks 2009 3-day

2020-10-20
This course, based on the ASME Y14.5-2009 standard, provides an in-depth explanation of how to use tolerance stacks to analyze product designs and how to use geometric tolerances in stacks. You will learn the essential methods and concepts used for creating 1D part and assembly tolerance stacks.
Technical Paper

Transitioning from IC Engine to Electric Vehicle: An Optimized Wheel End Solution

2020-10-05
2020-01-1632
This paper discusses the change in vehicle parameters when moving from a conventional internal combustion engine to electric motor. It discusses the impact on the wheel end bearings. Typically these include higher GAWRs (Gross Axle Weight Rating) at lower center of gravity heights. These changes require bearings to handle higher loads. Typically, larger loads will increase the bearing size and with it the mounting interface dimensions to auxiliary components. Timken demonstrates an alternative bearing design that can handle higher vehicle GAWRs but would allow for continuity in the surrounding brake corner components – saving OEMs significant design costs and delays.
Technical Paper

Determination of Diffusion Capability of Oxygen Through Brake Pads From the Surface Towards the Interior

2020-10-05
2020-01-1616
The oxidation of raw materials, such as phenolic resin, in the pad during the braking depends on the temperature but also on the oxygen diffusion capability through the brake pad. Determination of oxygen diffusion is a key point in knowing how deep from the surface tribochemistry can take place. In previous work from RIMSA, it was observed that iron sulphide had been reacted below the surface of the brake pad, suggesting that tribochemistry does not only take place on the surface. The diffusion of oxygen through the pad is a drawback because it induces the matrix decomposition that contributes to intra-stop CoF instability and consequently worsens NVH. This study is focused on determining the oxygen diffusion through brake pads using oxidized iron sulphide particles as indicator parameter. Iron sulphide has a peculiar microstructure (rough microstructure) when it becomes oxide that can be recognized easily, making it a good marker.
Technical Paper

A Full-System Approach to Maximise Energy Efficiency of a Wheel Bearing

2020-10-05
2020-01-1631
Environmental sustainability is morphing Automotive technical development strategies and driving the evolution of vehicles with a speed and a strength hardly foreseeable a decade ago. The entire vehicle architecture is impacted, and energy efficiency becomes one of the most important parameters to reach goals, which are now not only market demands, but also based on regulatory standards with penalty consequences. Therefore, rolling drag from all bearings in multiple rotating parts of the vehicle needs to be reduced; wheel bearings are among the biggest in size regardless of the powertrain architecture (ICE, Hybrid, BEV) and have a significant impact. The design of wheel bearings is a complex balance between features influencing durability, robustness, vehicle dynamics, and, of course, energy efficiency.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during the braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

A Study of the Interactions Between Phenolic Resin and Metal Sulphides and their Contribution to PAD Performance and Wear

2020-10-05
2020-01-1600
In order to keep the coefficient of friction stable, some additives such as metal sulphides, are included in the brake pads formulation. Previous work from RIMSA has shown that oxidation temperature range of the metal sulphides can be one of the key properties to explain their contribution to the performance and wear of a PAD. This new work is a step forward in the interpretation of the mechanism of sulphides as chemically active additives in the brake pads. Phenolic resin is the matrix of the brake pads and starts to decompose around 300 ºC in presence of oxygen and temperature. In order to establish a connection on between sulphide oxidation and phenolic resin degradation, several studies based on heat treatment of blends of different metal sulphides (Iron sulphide, Tin sulphide and Composite sulphide) with phenolic resin have been done. Then the material evolution was studied with techniques such as TGA - DSC, XRD, IR and SEM - EDS.
Technical Paper

Study on the Effect of Structural Parameters on the Linear Control Performance of High Speed On-Off Valve Based on Flow Field Analysis

2020-10-05
2020-01-1644
High speed on-off valve under the control of high frequency pulse width modulation (PWM) can make control linearly as proportional valve does. It is because its valve opening is adjusted linearly by duty ratio within a certain range. It is significant for high speed on-off valve to achieve precise linear control performance. In practice the performance is influenced not only by control strategy, but also the structural parameters of the valve, such as seat angle, spool diameter of valve and so on. In this paper, it is indicated that the effects of structural parameters on linear control performance of high speed on-off valve is exerted by flow force since different structural parameters bring about different valve opening-flow force characteristics. Accordingly, the relationship between the valve structural parameters and flow force is emphasized.
Technical Paper

Evaluation of a Low-Metals, Non-Petrochemical Coke for Use in Automotive Friction Materials

2020-10-05
2020-01-1603
A study was performed to compare the performance of automotive friction elements, each manufactured with one of two different coke fillers. Coke #1 is a conventional calcined petroleum coke, and coke #2 a proprietary, calcined coke manufactured from a non-petrochemical feedstock. Subject coke materials were fully characterized, physically and chemically. Both coke materials are similar in their respective physical properties, including morphology, hardness, and crush strength. However, there is a significant difference in the trace metal content of the two materials, with coke #1 containing a higher content of sulfur, calcium, iron, nickel, and vanadium than coke #2. Nickel and vanadium are considered potential environmental hazards. Initial friction element evaluation was performed using the J661 Brake Lining Quality Test Procedure (Chase Test). Ultimately each coke material was formulated into two different automotive brake elements.
Technical Paper

Design and Simulation of Braking System for ATV

2020-10-05
2020-01-1611
Design and Simulation Analysis of Braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, Structural, Thermal, Dynamic, Computational Flow Dynamics, Vibrational & Fatigue Behaviour of Ventilated brake disc Rotor, Hub and Brake Caliper are analysed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analysed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analysed from their characteristics plot. Vibrational Behaviour, Static and Structural Behaviour, Thermal Behaviour, Performance Efficiency, Flow Behaviour of Ventilated Disc Brake Rotor can be easily depicted with respect to Bump and Droop during Acceleration, High Climb and manoeuvrability.
X