Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Replacing twin electric fan radiator with Single fan radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

Development of high power density diesel engine for constant speed application

2019-11-21
2019-28-2566
Engine up gradation for higher power rating involves challenges that require hardware changes which not only increase cost but also demand higher space. This paper focuses on the up gradation of a 4 cylinder 4.9l CRDi engine from 24.03 kW/L to 30.75 kW/L by adjustment of various parameters to meet both emission and performance targets. Various challenges like higher exhaust temperature, increased peak firing pressure etc. were met using the proper calibration strategy. To meet SFC targets and keep peak firing pressures, exhaust temperatures within desired limits, different operating points for EGR, main injection timing, rail pressure have been optimized. The operating points for optimization were determined by conducting various drive trials on different type of load conditions in test bench. Calibration strategy involved the safe limits of NOx, soot, CO emissions, fuel consumption.pfp, and exhaust temperature.
Technical Paper

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

2019-10-28
2019-01-2599
The design optimization and control of Free Piston Linear Engine (FPLE) has been found to be difficult as each independent variable changes the dynamics with respect to time. These dynamics, in turn, alters the alternator and engine response to other governing variables. As a result, the FPLE system necessitates an energy balance control algorithm with high-speed dynamic response for stable operation and perhaps optimized system efficiency. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the alternator. This energy balance control is similar to the use of a governor to control the crankshaft rotational speed in a conventional crankshaft driven engine. In addition to that, when stiff springs are added to the FPLE system, the dynamics becomes more sinusoidal and more consistent with increasing spring stiffness.
Technical Paper

Hypersonic Flow Simulation Towards Space Propulsion Geometries

2019-09-16
2019-01-1873
This work aims to expand the applicability of an open-source numerical tool to solve hypersonic gas dynamic flows for space propulsion geometries. This is done by validating the code using two well-known hypersonic test cases, the double cone and the hollow cylinder flare, used by the NATO Research and Technology Organization for the validation of hypersonic flight for laminar viscous-inviscid interactions (D. Knight, "RTO WG 10 - Test cases for CFD validation of hypersonic flight," in 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002). The Computational Fluid Dynamic (CFD) simulation is conducted using the two-temperature solver hy2Foam that is capable to study external aerodynamics in re-entry flows. In the present work the assessment of hy2Foam to solve hypersonic complex flow features with strong interactions including non-equilibrium effects was demonstrated.
Technical Paper

Knock Onset detection methods evaluation by in-cylinder direct observation

2019-09-15
2019-24-0233
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many index and methodologies has been proposed. In this work, most used methods for knock onset detection from in-cylinder pressure analyses have been considered.
Technical Paper

How to Improve SI Engine Performances by means of Supercritical Water Injection

2019-09-15
2019-24-0235
The efficiency of ICEs is strongly affected by the heat losses of exhaust gases and engine cooling system, which account for about 60% of the heat released by combustion. Several technologies were developed to recover waste heat in ICEs, from turbochargers to ORCs, Stirling cycles and piezoelectric generation. A promising approach is to transfer the waste heat to a fluid, like water, and inject it into the combustion chamber. In such a way, the recovered energy is partially converted into mechanical work, by improving both engine efficiency and performance. In this work, the engine benefits obtained by using supercritical water as the vector to recover heat losses are analysed. Water has been chosen since it has a relatively high heat capacity and can be extracted directly from exhaust gases. A quasi-dimensional model has been implemented to simulate the ICE work cycle. Specifically, in this paper a spark ignition ICE, four-stroke with port fuel injection (PFI) has been considered.
Technical Paper

Knock Mitigation by Means of Coolant Control

2019-09-09
2019-24-0183
The potentiality of knock mitigation by means of the control of the coolant flow rate is investigated. As a first step, the dynamic behavior of the wall temperature in response to a sudden variation of the coolant flow rate is analyzed experimentally in a small displacement, 4-valve per cylinder SI engine, which is equipped with an electrically driven pump. Subsequently, the influence of the wall temperature on knock onset is analyzed through a zero-dimensional model and the Livengood and Wu integral. Finally, an experimental activity on the engine test bed is carried-out in order to evaluate the influence of the coolant flow rate and of the engine inlet coolant temperature on the knock phenomenon. Results show that, even though a retarded spark advance and a mixture enrichment are not avoidable in the early stage of knock onset, a cooling control can help reducing the time of use of these fuel consuming strategies in the case of prolonged high-load conditions.
Technical Paper

HCCI with Wet Ethanol: Investigating the Charge Cooling Effect of a High Latent Heat of Vaporization Fuel.

2019-09-09
2019-24-0024
The combustion phasing of Homogeneous Charge Compression Ignition combustion is incredibly sensitive to intake temperature. Controlling the intake temperature on a cycle-to-cycle basis is one-way control combustion phasing, however accomplishing this with an intake air heater/intercooler is unfeasible. One possible way to control the intake temperature is through the direct injection of fuel. The direct injection of fuel during the intake stroke cools the charge via evaporative cooling. Some heat is absorbed from the incoming air, lowering the in-cylinder temperature, while some heat is absorbed from the piston/cylinder walls if the spray reaches the walls. The amount of heat that is absorbed from the air vs. the walls depends on the injection timing during the intake. Therefore, if a high latent heat of vaporization fuel is used, the intake temperature will become very sensitive to injection timing, allowing for cycle-to-cycle control of combustion phasing.
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Optical Investigation of Mixture Formation in a Small Bore DISI Engine by Laser Induced Exciplex Fluorescence (LIEF)

2019-09-09
2019-24-0133
Legislative and customer demands in terms of fuel consumption and emissions are an enormous challenge for the development of modern combustion engines. Downsizing in combination with turbocharging and direct injection is one way to increase efficiency and therefore meet the requirements. This results in a reduction of the displacement and thus the bore diameter. The application of direct injection with small cylinder dimensions increases the probability of the interaction of liquid fuel with the cylinder walls, which may result in disadvantages concerning especially particulate emissions. This leads to the question which bore diameter is feasible without drawbacks concerning emissions as a result of wall wetting. The emerging trends towards long-stroke engine design and hybridization make the use of small bore diameters in future gasoline engines a realistic scenario.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of test benches within the framework of research and development projects directly correlates with the "health" of the examinee to be investigated. The use of so-called Early Damage Detection Systems (EDDS) is becoming increasingly popular for reasons of Unit Under Test (UUT) monitoring. In the context of this publication the expectations of an EDDS and its structure are discussed as well as its advantages and disadvantages in test bench operation analyzed and compared with the results of measurements. The used EDDS should primarily prevent the damage, up to the loss of the test object by a total loss, in order to ensure a finding possibility of the damaged part at the examined test object. A deviation of the test object behavior from the undamaged condition must be recognized in an early status and must lead to a shutdown of the test bench operation after reaching a defined limit value.
Technical Paper

Intake Manifold Primary Trumpet Tuning Options for Fuel Flow Limited High Performance ICE

2019-09-09
2019-24-0005
The 2014 change in Formula One regulations, from naturally aspirated to highly-downsized and heavily-boosted hybridized power units, led to a relevant increase of the internal combustion engine brake specific power output in comparison with former V-8 units. The newly designed “down-sized” engines are characterized by a fuel flow limitation and a relevant increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Furthermore, efficiency becomes an equivalent paradigm as performance. In the power unit layout, the air path is defined by the compressor, the intercooler and the piping from the intake plenum to the cylinder. Intake duct length is defined from intake plenum to valve seat and it is a key parameter for engine performance. In order to find the optimum length different design criteria can be applied: the so called “tuning”, the “un-tuning” or the “anti-tuning” are all valid possibilities, showing pros and cons.
Technical Paper

Cylinder Pressure Based Method for In-Cycle Pilot Misfire Detection

2019-09-09
2019-24-0017
For the reduction of emissions and combustion noise in a internal combustion Diesel engine, multiple injections are normally used. A pilot injection reduces the ignition delay of the main injection and hence the combustion noise. However, normal variations of the operating conditions, component tolerances and aging may result in the lack of combustion (misfire) or even the lack of injection (miss-injection) for short on-times. The result is a lower indicated thermal efficiency, higher emissions and louder combustion noise. Closed-loop combustion control techniques aim to monitor in real-time these variations and act accordingly to counteract their effect. To ensure the in-cycle controllability of the main injection, the misfire diagnosis must be performed before the start of the main injection. This paper focuses on the development and evaluation of in-cycle algorithms for the pilot misfire detection.
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Technical Paper

Integrated CFD-Experimental Methodology for the Study of a Dual Fuel Heavy Duty Diesel Engine

2019-09-09
2019-24-0093
This paper deals with the experimental and numerical investigation of a 2.0 litre single cylinder Heavy Duty Diesel Engine fuelled by natural gas and diesel oil in Dual Fuel mode. Due to the gaseous nature of the main fuel and to the high compression ratio of the diesel engine, reduced emissions can be obtained. An experimental study has been carried out at three different load level (25%, 50% and 75% of full engine load). Basing on experimental data, the authors’ methodology is based on the use of one-dimensional and 3-dimensional models. The former is able to perform the whole engine with faster simulations while the latter can study deeply the even more complex phenomena (turbulence, combustion, etc.), due to the presence and to the interaction of the two fuels, which occur in the cylinder for the most interesting operating conditions.
Technical Paper

Effects of the Domain Zonal Decomposition on the Hybrid URANS/LES Modeling of the TCC-III Motored Engine Flow

2019-09-09
2019-24-0097
Hybrid URANS/LES turbulence modeling is rapidly emerging as a valuable complement to standard LES for full-engine multi-cycle simulation. Among the available approaches, zonal hybrids are potentially attractive due to the possibility of clearly identify URANS and LES zones, eventually introducing further zone types with dynamically switching behavior. The present work aims at evaluating the impact of different zonal configurations on the simulated flow statistics using the well-assessed TCC-III experimental engine setup. More specifically, different methods (URANS, LES or seamless DES) are applied inside the cylinder volume, as well as into the intake/exhaust ports and plenums. For each of the five tested configurations, in-cylinder flow features are compared against the reference TCC-III experimental measurements, in terms of ensemble-averaged, RMS fields and flow alignment.
Technical Paper

Development and Validation of SI Combustion Models for Natural-Gas Heavy-Duty Engines

2019-09-09
2019-24-0096
Flexible, reliable and consistent combustion models are necessary for the improvement of the next generation spark-ignition engines. Different approaches have been proposed and widely applied in the past. However, the complexity of the process involving ignition, laminar flame propagation and transition to turbulent combustion need further investigations. Purpose of this paper is to compare two different approaches describing turbulent flame propagation. The first approach is the one-equation flame wrinkling model by Weller, while the second is the Coherent Flamelet Model (CFM). Ignition is described by a simplified deposition model while the correlation from Herweg and Maly is used for the transition from the laminar to turbulent flame propagation. Validation of the proposed models was performed with experimental data of a natural-gas, heavy duty engine running at different operating conditions.
Technical Paper

CFD Modeling of Compact Heat Exchangers for I.C. Engine Oil Cooling

2019-09-09
2019-24-0179
In the last years, the increase of the specific power of the modern engines has required a parallel improvement of the performances of the cooling system. In this context, also the control of the oil temperature has become an important issue, leading to the introduction of dedicated cooling circuits (air-cooled or liquid-cooled). Among the two, the liquid-cooled solution results in a more compact installation in which the oil-to-liquid heat exchanger is directly mounted on the engine block and integrated in the engine cooling system. It is clear that, in a liquid-cooled solution, the design of the heat exchanger represents an issue of extreme concern, which requires a compromise between different objectives: high compactness, low pressure drop, high heat-transfer efficiency. In this work, a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins as heat transfer enhancer (turbolator), has been developed.
Technical Paper

Improvement in Thermal Efficiency of a Diesel Engine by Homogenized Flame Distribution

2019-09-09
2019-24-0166
In-cylinder combustion state is assumed as homogeneous with steady physical properties of working gas for the ideal thermal efficiency calculation, whereas that for an actual diesel engine (diffusion combustion) is much heterogeneous by complexed temperature and gas composition distribution resulting in the lower specific heat ratio. The goal of this study is to improve thermal efficiency by keeping specific heat ratio higher in the burned zone, which could be achieved with better air entrained and highly dispersed flame in the cylinder.
X